2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节训练练习题(名师精选).docx

上传人:知****量 文档编号:28163022 上传时间:2022-07-26 格式:DOCX 页数:22 大小:907.96KB
返回 下载 相关 举报
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节训练练习题(名师精选).docx_第1页
第1页 / 共22页
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节训练练习题(名师精选).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节训练练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节训练练习题(名师精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中,是中心对称图形的是()ABCD2、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD3、

2、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD4、下列图形中,是中心对称图形的是( )ABCD5、如图,ABC中,C=84,CBA=56,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28B40C42D506、下列图中,既是轴对称图形又是中心对称图形的是()ABCD7、下列图形中,是中心对称图形的是()ABCD8、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD9、下列图形中,是中心对称图形的是( )AB CD10、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,AC

3、B=90,A=28,若以点C为旋转中心,将ABC逆时针旋转到DEC的位置,点在边DE上,则旋转角的度数是_2、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是_3、如图,正方形的边长为3,为边上一点,绕着点逆时针旋转后与重合,连结,则_4、若点与点关于原点对称,则_5、如图,ABC的顶点A,B分别在x轴,y轴上,ABC90,OAOB1,BC2,将ABC绕点O顺时针旋转,每次旋转90,则第2021次旋转结束时,点C的坐标为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在66的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按

4、要求在图,图,图中画图:(1)在图中,画等腰ABC,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3)在图中,画ABC,使ACB=90,面积为5,点C在格点上2、如图,在等腰直角中,点D,E在边BC上,且,将绕点A逆时针旋转90得到,连接EF(1)求证:(2)若,求CE3、如图,ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3)(1)请画出ABC关于y轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC绕点B顺时针旋转90后的A2BC2;(3)求出(2)中A2BC2的面积4、图1、图2均为7

5、6的正方形网格,点A、B、C在格点上(1)在图1中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(试画出2个符合要求的点,分别记为D1、D2)(2)在图2中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(试画出2个符合要求的点,分别记为E1、E2)5、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2)(1)画出ABC关于原点O对称的A1B1C1(2)求A1B1C1的面积-参考答案-一、单选题1、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形

6、为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键2、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两

7、部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、D【详解】解:是轴对称图形,不是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;不是轴对称图形,也不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合4、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后与原来的图形重合,那么这个图形就叫做

8、中心对称图形,这个点叫做中心对称进行解答即可【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键5、B【分析】先求出A=40,再根据旋转和平行得出DBA=40,进而可求EBC的度数【详解】解:ABC中,C=84,CBA=56,A=180-C -CBA=40,由旋转可知,D=A=40,EBC=DBA,DE/AB,D=DBA=40,EBC=DBA=40,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解

9、题关键是熟记旋转的性质,准确识图,正确进行推导计算6、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合7、D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中

10、心对称图形【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键8、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不

11、是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键9、B【分析】根据中心对称图形的定义求解即可【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意故选:B【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形10、A【详解】

12、解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键二、填空题1、56【分析】直接利用旋转的性质得出EC=BC,进而利用三角形内角和定理得出E=ABC=62,即可得出ECB的度数,得出答案即可【详解】解:以点C为旋转中心,将ABC旋转到DEC的位置,点B在边DE上,EC=B

13、C,ACB=90,A=28,E=ABC=62,EBC=62,ECB=180-62-62=56,则旋转角的度数是56故答案为:56【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出E=ABC的度数是解题关键2、【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.3、【分析】根据旋转得旋转角为,可知,然后根据勾股定理求出即可求出【详解】根据旋转

14、得旋转角为,, 故答案为:【点睛】本题主要考查了旋转的性质以及勾股定理,根据旋转得出,是解题的关键4、【分析】利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关于、的二元一次方程组,解方程求出、的值,进而求出【详解】和点关于原点对称, 解得: , 故答案为:【点睛】本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键5、【分析】过点C作 轴于点D,根据 OAOB1,AOB=90,可得ABO=45,从而得到CBD=45,进而得到BD=CD=2,可得到点,再由将ABC绕点O顺时针旋转,第一次旋转90后,点,

15、将ABC绕点O顺时针旋转,第二次旋转90后,点,将ABC绕点O顺时针旋转,第三次旋转90后,点,将ABC绕点O顺时针旋转,第四次旋转90后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环,即可求解【详解】解:如图,过点C作 轴于点D,OAOB1,AOB=90,ABO=45,ABC90,CBD=45,BCD=45,BD=CD,BC2, ,BD=CD=2,OD=OB+BD=3,点,将ABC绕点O顺时针旋转,第一次旋转90后,点,将ABC绕点O顺时针旋转,第二次旋转90后,点,将ABC绕点O顺时针旋转,第三次旋转90后,点,将ABC绕点O顺时针旋转,第四次旋转90后,点, 由此发现,ABC绕点O

16、顺时针旋转四次一个循环, ,第2021次旋转结束时,点C的坐标为故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解【详解】解:(1)如图中,ABC即为所求作(答案不唯一);(2)如图中,平行四边形ABCD即为所求作;(3)如图中,ABC即为所求作(答案不唯一);AB=AG,BC=CG,ACBG,ABG的面积为,ABC的面积为5,且ACB

17、=90【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题2、(1)见解析;(2)3【分析】(1)根据旋转的性质,可得BAD=CAF,AD=AF,再由,可得EAF=45,从而得到EAF=DAE,进而得到DAEFAE,即可求证;(2)根据旋转的性质,可得B=ACF,CF=BD=4,再由等腰直角三角形的性质可得B=ACB=45,从而得到ACF=45, ,进而得到ECF=90,再由,可得EF=8-CE,然后在 中,由勾股定理,即可求解【详解】解:(1)将绕点A逆时针旋转90得到,BAD=CAF,AD=AF,BAD+CAE=

18、BAC-DAE=45,CAF+CAE=BAC-DAE=45,即EAF=45,EAF=DAE,AE=AE,DAEFAE,DE=EF;(2)将绕点A逆时针旋转90得到,B=ACF,CF=BD=4,在等腰直角中,B=ACB=45,ACF=45, ,ECF=ACB+ACF=90,BD=4,DE+CE=8,DE=EF,EF+CE=8,EF=8-CE,在 中, , ,解得: 【点睛】本题主要考查了全等三角形的判定和性质,图形的旋转,勾股定理,等腰直角三角形的性质,熟练掌握相关知识点是解题的关键3、(1)见解析,(2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C

19、的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算A2BC2的面积【详解】解:(1)如图,A1B1C1为所作,点A1的坐标为(2,4);(2)如图,A2BC2为所作;(3)A2BC2的面积333121323.5【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了轴对称变换4、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义进行画图;(2)根据中心对称的图形的定义画图【详解】(1)如图:(2)如图:【点睛】本题主要考查了利用轴对称、中心对称设计图案,解题的关键是掌握寻找中心对称的中心、轴对称的对称轴与画图的综合能力5、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求A1B1C1面积【详解】(1)ABC关于原点O对称的A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁