2022年强化训练北师大版九年级数学下册第三章-圆定向测评试卷(名师精选).docx

上传人:知****量 文档编号:28161469 上传时间:2022-07-26 格式:DOCX 页数:29 大小:734.09KB
返回 下载 相关 举报
2022年强化训练北师大版九年级数学下册第三章-圆定向测评试卷(名师精选).docx_第1页
第1页 / 共29页
2022年强化训练北师大版九年级数学下册第三章-圆定向测评试卷(名师精选).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年强化训练北师大版九年级数学下册第三章-圆定向测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆定向测评试卷(名师精选).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形中,以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD2、如图,ABC

2、D是的内接四边形,则的度数是( )A50B100C130D1203、已知O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与O的位置关系是( )A点A在O内 ;B点A在O上;C点A在O外;D不能确定4、计算半径为1,圆心角为的扇形面积为( )ABCD5、如图,O中,半径OCAB于D,且CD2,弦AB8,则O的半径的长等于( )A3B4C5D66、如图,RtABC中,A90,B30,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)7、如图,AB,BC,CD分别与O相切于E、F、G三点,且ABCD

3、,BO3,CO4,则OF的长为()A5BCD8、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A点在圆内B点在圆外C点在圆上D无法判断9、如图,在圆内接五边形中,则的度数为( )ABCD10、下列图形中,ABC与DEF不一定相似的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个扇形的圆心角为120,半径为2,那么该扇形的面积为_2、如图,AB是半圆O的直径,AB4,点C,D在半圆上,OCAB,点P是OC上的一个动点,则BPDP的最小值为_3、如图,在O中,ACBD,若AOC120,则BOD_4、16.如图,平行四边形AB

4、CD中,ACB = 30,AC的垂直平分线分别交AC,BC,AD于点O,E,F,点P在OF上,连接AE,PA,PB.若PA = PB,现有以下结论:PAB为等边三角形;PEBAPF;PBC - PAC = 30;EA = EB + EP其中一定正确的是_(写出所有正确结论的序号) 5、如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形若制作一个圆心角为160的圆弧形窗帘轨道(如图2)需用此材料mm,则此圆弧所在圆的半径为_mm三、解答题(5小题,每小题10分,共计50分)1、如图,圆是的内切圆,其中,求其内切圆的半径2、如图是由小正方形组成的97网格,每个小正方形的顶点叫做格点,A,B,C三个格

5、点都在圆上仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为O的一条切线,并画出过点E的另一条切线EF,切点为F3、已知:如图,ABC为锐角三角形,ABAC 求作:一点P,使得APCBAC作法:以点A为圆心, AB长为半径画圆;以点B为圆心,BC长为半径画弧,交A于点C,D两点;连接DA并延长交A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BDABAC,点C在A上BCBD,_BACCAD 点D,P在A上,CPDCAD(_) (填推理的依据)APCBAC4、

6、如图,在ABC中,ABAC,以AB为直径的O交BC于D,交AC于E,连接OE,过点D作DFAC于F(1)求证:DF与O相切;(2)填空:若CDF的面积为3,则CDE的面积为 当CDF的度数为 时,OEBC,此时四边形ODCE的形状是: 5、如图,在ABCD中,D60,对角线ACBC,O经过点A、点B,与AC交于点M,连接AO并延长与O交于点F,与CB的延长线交于点E,ABEB(1)求证:EC是O的切线;(2)若AD2,求O的半径-参考答案-一、单选题1、C【分析】过点P作交于点M,由菱形得,由,得,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与

7、中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键2、B【分析】根据圆的内接四边形对角互补求得,进而根据圆周角定理求得【详解】解:ABCD是的内接四边形,故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得是解题的关键3、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内判断出即可【详解】解:O的半径为3cm,OA=6cm,dr,点A与O的位置关系是:点A在O外,故选:C【点睛】本题主要考查了对点与圆的位置关系的判断关键要记

8、住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内4、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键5、C【分析】根据垂径定理得出AD=BD=,设O的半径的长为x,根据勾股定理,即,解方程即可【详解】解:半径OCAB于D,弦AB8,AD=BD=,设O的半径的长为x,OD=OC-CD=x-2,在RtODB中,根据勾股定理,即,解得x=5,O的半径的长为5故选择C【点睛】本题考查垂径定理,勾股定理,解拓展一元一次方程,掌握垂径定理,勾股定理,解拓展一元一次方程是解题关键6、

9、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线7、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得【详解】解:连接OF,

10、OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,SOBC=12OBOC=12BCOF,故选:D【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键8、A【分析】直接根据点与圆的位置关系进行解答即可【详解】解:O的半径为5cm,点P与圆心O的距离为4cm,5cm4cm,点P在圆内故选:A【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外9、B【分析】先利用多边的内角和得到,可计算出,然后根据圆

11、内接四边形的性质求出的度数即可.【详解】解:五边形的内角和为,四边形为的内接四边形,.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的性质是解答本题的关键.10、A【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判

12、定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理二、填空题1、【分析】利用扇形面积公式直接计算即可【详解】解:扇形的圆心角为120,半径为2,那么该扇形的面积为:,故答案为:【点睛】本题考查了求扇形面积,解题关键是熟记扇形面积公式:2、【分析】如图,连接AD,PA,PD,OD首先证明PA=PB,再根据PD+PB=PD+PAAD,求出AD即可解决问题【详解】解:如图,连接AD,PA,PD,ODOCAB,OA=OB,PA=PB,COB=90,DOB=90=60,OD=OB,OBD是等边三角形,ABD=60AB是直径

13、,ADB=90,AD=ABsinABD=2,PB+PD=PA+PDAD,PD+PB2,PD+PB的最小值为2,故答案为:2【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题3、【分析】根据圆的性质,可得OA=OB,OC=OD,证明AOCBOD,即可得答案【详解】解:由题意可知:OA=OB,OC=OD,ACBD,AOCBOD,AOC120,BOD120,故答案为:120【点睛】本题考查了圆的性质、三角形全等的判定和性质,做题的关键是证明AOCBOD4、【分析】根据等边三角形的性质、垂直平分线的性质逐项进行分析即可【详解】连接PCAC的垂直平

14、分线分别交AC,BC,AD于点O,E,FPA=PC,EFAC,EA=ECPA=PB,PA=PB=PC点A、B、C在以P为圆心的圆上PAB为等边三角形;故正确;ACB = 30,EFAC,EA=ECPAB为等边三角形,故错误;平行四边形ABCD中ADBC,,AEF为等边三角形,即PBC - PAC = 30,故正确;AEF、PAB为等边三角形EF=EP+PF=EAEA=EB+EP,故正确;综上,一定正确的是故答案为:【点睛】本题综合考查等边三角形的性质与判定、相似三角形的判定、圆周角定理、平行四边形的性质,解题的关键是根据PA=PB=PC得到点A、B、C在以P为圆心的圆上5、900【分析】由弧长

15、公式l=得到R的方程,解方程即可【详解】解:根据题意得,=,解得,R=900(mm)答:这段圆弧所在圆的半径R是900 mm故答案是:900【点睛】本题考查了弧长的计算公式:l=,其中l表示弧长,n表示弧所对的圆心角的度数三、解答题1、【分析】过B作BDAC于D,切点分别为E、F、G,连结OE,OF,OG,根据勾股定理BD=,根据ABC面积两种求法列等式得出即可【详解】解:过B作BDAC于D,切点分别为E、F、G,连结OE,OF,OG,设AD=x,CD=8-x, 其内切圆的半径为r,根据勾股定理,即,解方程得,BD=,圆是的内切圆,OEAC,OFAB,OGBC,OE=OF=OG=r,SABC=

16、,【点睛】本题考查三角形内切圆的性质,勾股定理,三角形面积,掌握三角形内切圆的性质,勾股定理,三角形面积公式是解题关键2、(1)作图见详解;(2)作图见详解【分析】(1)四边形ABCG为矩形,连接AC,BG交点即为圆心O;观察图发现在线段AB中间的一个小正方形方格内,连接其对角线,交于点H,然后连接OH交圆O于点D,即为所求;(2)在方格中利用全等三角形可得RtACGRtEAD,由其性质得出+CAG=90,且点E恰好在格点上,即为所求;连接OU,EU,JT,MT,RM,SA,利用全等三角形的性质及平行线的性质可得SAEO,根据垂直于弦的直径同时平分弦,得出点F即为点A关于OE的对称点,即为所求

17、【详解】解:(1)如图所示:四边形ABCG为矩形,连接AC,BG交点即为圆心O;观察图发现在线段AB中间的一个小正方形方格内,连接其对角线,交于点H,然后连接OH交圆O于点D,即为所求;(2)如图所示:在RtACG与RtEAD中,AG=DE=4AGC=EDACG=AD=3,RtACGRtEAD,ACG=DAE,ACG+CAG=90,+CAG=90,CAAE,点E恰好在格点上,即为所求;如图所示:连接OU,EU,JT,MT,RM,SA,由图可得:RtOUE与RtMTJ中,EU=JTEUO=JTMOU=MT,RtOUERtMTJ,OEU=TJM,EOJM,同理可得:JMT=RMO=PAS,MRSA

18、,JMT+OMJ=90,OMR+OMJ=90,RMMJ,SAMJ,SAEO,与圆O的交点F即为所求(点F即为点A关于OE的对称点)【点睛】题目主要考查直线与圆的作图能力,全等三角形的应用,平行线的性质等,在方格中找出全等的三角形是解题关键3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BDABAC,点C在A上BCBD,BAC=BADBACCAD 点D,P在A上,CPDCAD(圆周角定理) (填推理的依据)APCBAC故答案为:BAC=BA

19、D,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键4、(1)见解析(2)630;菱形【分析】(1)由等腰三角形的性质得ABCC,由OBOD,得ABCODB,则ODBC,得出ODAC,再由DFAC,得出ODDF,即可得出结论;(2)由圆周角定理和平角性质得ABCAED180,DECAED180,推出ABCDEC,CDEC,得出DEDC,由等腰三角形的性质得CE2CF,则SCDE2SCDF,即可得出结果;利用平行线的性质证明OE是ABC的中位线,得出BC2OEABAC,则ABC为等边三角形,得C60,证明CDE为等边三角形,

20、得出CDE60,由等腰三角形的性质得CDFCDE30,由OECD,ODCE,得四边形ODCE为平行四边形,再由ODOE,得出平行四边形ODCE为菱形【详解】解:(1)证明:ABAC,ABCC,连接OD,OBOD,ABCODB,ODBC,ODAC,DFAC,ODDF,DF与O相切;(2)解:ABCAED180,DECAED180,ABCDEC,ABCC,CDEC,DEDC,DFAC,CE2CF,SCDE2SCDF236,故答案为:6;OEBCO点是AB中点E点是AC中点OE是ABC的中位线,BC2OEABAC,ABC为等边三角形,C60,DEDC,CDE为等边三角形,CDE60,DFAC,CDF

21、12CDE126030,OECD,ODCE,四边形ODCE为平行四边形,ODOE,平行四边形ODCE为菱形,故答案为:30;菱形【点睛】本题是圆综合题,主要考查了圆周角定理、切线的判定、平行线的性质与性质、三角形中位线定理、等腰三角形的判定与性质、等边三角形的判定与性质、平行四边形的判定、菱形的判定、三角形面积计算等知识;熟练掌握切线的判定和等腰三角形的判定与性质、等边三角形的判定与性质是解题的关键5、(1)见详解;(2)4【分析】(1)连接OB,根据平行四边形的性质得到ABC=D=60,求得BAC=30,根据等腰三角形的性质和三角形的外角的性质得到ABO=OAB=30,于是得到结论;(2)根

22、据平行四边形的性质得到BC=AD=2 ,过O作OHAM于H,则四边形OBCH是矩形,解直角三角形即可得到结论【详解】(1)证明:连接OB,四边形ABCD是平行四边形,ABC=D=60,ACBC,ACB=90,BAC=30,BE=AB,E=BAE,ABC=E+BAE=60,E=BAE=30,OA=OB,ABO=OAB=30,OBC=30+60=90,OBCE,EC是O的切线;(2)解:四边形ABCD是平行四边形,BC=AD=2 ,过O作OHAM于H,则四边形OBCH是矩形,OH=BC=2,OA=4, O的半径为4【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁