2022年强化训练北师大版九年级数学下册第三章-圆定向测试试题.docx

上传人:知****量 文档编号:28160815 上传时间:2022-07-26 格式:DOCX 页数:39 大小:1.45MB
返回 下载 相关 举报
2022年强化训练北师大版九年级数学下册第三章-圆定向测试试题.docx_第1页
第1页 / 共39页
2022年强化训练北师大版九年级数学下册第三章-圆定向测试试题.docx_第2页
第2页 / 共39页
点击查看更多>>
资源描述

《2022年强化训练北师大版九年级数学下册第三章-圆定向测试试题.docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆定向测试试题.docx(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB,BC,CD分别与O相切于E、F、G三点,且ABCD,BO3,CO4,则OF的长为()A5BCD2、如图,

2、AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D3、下列图形中,ABC与DEF不一定相似的是( )ABCD4、如图,菱形ABCD的顶点B,C,D均在A上,点E在弧BD上,则BED的度数为()A90B120C135D1505、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A6,3B6,3C3,6D6,36、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD7、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD

3、38、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D129、如图,ABCD是的内接四边形,则的度数是( )A50B100C130D12010、如图,BD是O的切线,BCE30,则D()A40B50C60D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,点O,B的对应点分别为O,B,连接BB,则图中阴影部分的面积是_2、如图,直线l与半径为8的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl于B,连接PA设PA=x,PB=y,则(x-y)的最大值是_3、如图

4、,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120不变,则四边形ADBC的面积S的最大值是 _4、如图,PA、PB是O的切线,A、B为切点,OAB30则APB=_度;5、如图,在平面直角坐标系中,点,的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,O为坐标原点,抛物线yax2bxc(a0)过O、B、C三点,B、C坐标分别为(10,0)和(,),以OB为直径的A经过C点,直线l垂直x轴于B点(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)

5、点M是A上一动点(不同于O,B),过点M作A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0t8)秒时恰好使BPQ为等腰三角形,请求出满足条件的t值2、如图1,抛物线yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,顶点为D,OBOC3OA(1)求抛物线解析式;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线ykx2k5(k0)与抛物线

6、交于F、G两点,求当k为何值时,FGH面积最小,并求出面积的最小值;(3)如图3,已知直线l:y2x1,将抛物线沿直线l方向平移,平移过程中抛物线与直线l相交于E、F两点设平移过程中抛物线的顶点的横坐标为m,在x轴上存在唯一的一点P,使EPF90,求m的值3、如图,中,以为直径的交于点,交于点,过点作于点,交的延长线于点(1)求证:是的切线;(2)已知,求和的半径长4、如图,ABC内接于O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PFCF(1)求证:CF是O的切线;(2)连接AP与O相交于点G,若ABC2PAC,求证:ABBP

7、;(3)在(2)的条件下,若AC4,BC3,求CF的长5、如图,AB为O的弦,OCAB于点M,交O于点C若O的半径为10,OM:MC3:2,求AB的长-参考答案-一、单选题1、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得【详解】解:连接OF,OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,SOBC=12OBOC=12BCOF,故选:D【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解

8、题关键2、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出3、A【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理

9、得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理4、B【分析】连接AC,根据菱形的性质得到ABC、ACD是等边三角形,求出BCD=120,再根据圆周角定理即可求解【详解】如图,连接ACAC=AB=AD四边形ABCD是菱形AB=BC=AD=CD=ACABC、ACD是等边三角形ACB=ACD=60BCD=120优弧BED=BCD=120故选B【点睛】此题主要考查圆内角度求解,解题的关键是熟知菱形的性质及圆周角定理5、B【分析】如图1,O是正六边

10、形的外接圆,连接OA,OB,求出AOB=60,即可证明OAB是等边三角形,得到OA=AB=6;如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,先求出AO1B60,然后根据等边三角形的性质和勾股定理求解即可【详解】解:(1)如图1,O是正六边形的外接圆,连接OA,OB,六边形ABCDEF是正六边形,AOB=3606=60,OA=OB,OAB是等边三角形,OA=AB=6;(2)如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,六边形ABCDEF是正六边形,AO1B60,O1A= O1B,O1AB是等边三角形,O1A= AB=6,O1MAB,

11、O1MA90,AMBM,AB6,AMBM,O1M故选B【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键6、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,弦AB、CD互相垂直,DPB=90,OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的

12、关键是正确地作出辅助线7、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30又AB=6,ABA=30故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键8、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点

13、睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键9、B【分析】根据圆的内接四边形对角互补求得,进而根据圆周角定理求得【详解】解:ABCD是的内接四边形,故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得是解题的关键10、D【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【详解】解:连接 BD是O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键二、填空题1、【分析】连接,证明是含30的,根据即可求解【详解】解

14、:如图,连接,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,,是等边三角形,三点共线,是等边三角形又【点睛】本题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键2、4【分析】作直径AC,连接CP,得出APCPBA,利用相似三角形的性质得出y=x2,所以x-y=x-x2=-x2+x=-(x-8)2+4,当x=8时,x-y有最大值是4【详解】解:如图,作直径AC,连接CP, CPA=90,AB是切线,CAAB,PBl,ACPB,CAP=APB,APCPBA,PA=x,PB=y,半径为8,y=x2,所以x-y=x-x2=-x2+x=-(x-8)2+4,当x=8时,x-y有最大值

15、是4,故答案为:4【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键3、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质4、60【分析】先根

16、据圆的切线的性质可得,从而可得,再根据切线长定理可得,然后根据等边三角形的判定与性质即可得【详解】解:是的切线,是等边三角形,故答案为:60【点睛】本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键5、(2,1)【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心【详解】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心如图所示,则圆心是(2,1)故答案为(2,1)【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”三、解答题1、(1)yx;(2

17、)抛物线的解析式为:yx2x,顶点坐标为(5,);(3)mn25;(4)或5或【分析】(1)用待定系数法即可求得;(2)应用待定系数法以及顶点公式即可求得;(3)连接AE、AM、AF,则AMEF,证得RtAOERTAME,求得OAEMAE,同理证得BAFMAF,进而求得EAF90,然后证明EMAAMF,得到,即可求得(4)分三种情况分别讨论,当PQBQ时,作QHPB,得到BHQBOP,求出直线BC解析式,得到HB:BQ4:5;即可求得,当PBQB时,则10tt即可求得,当PQPB时,作QHOB,根据勾股定理即可求得【详解】解:(1)设直线BC的解析式为ykx+b,直线BC经过B、C,解得:,直

18、线BC的解析式为:yx;(2)抛物线yax2+bx+c(a0)过O、B、C三点,B、C坐标分别为(10,0)和(,),解得,抛物线的解析式为:2;5,2525,顶点坐标为(5,);(3)mn25;如图2,连接AE、AM、AF,则AMEF,在RtAOE与RtAME中 RtAOERtAME(HL),OAEMAE,同理可证BAFMAF,EAF90,EAM+FAM=90,EF为A切线,AMEF,EMA=FMA=90,AEM+EAM=90,AEM=MAF,EMAAMF,,AM2EMFM,AMOB5,MEm,MFn,mn25;(4)如图3有三种情况;当PQBQ时,作QHPB,垂足为H,则BHQBOP,设直

19、线BC解析式为y=px+q,B、C坐标分别为(10,0)和(,),直线BC的解析式为,点P坐标为(0,-),BHQBOP,,HQ:BQ3:5,HB:BQ4:5;HB(10t),BQt,解得;,当PBQB时,则10tt,解得t5,当PQPB时,作QHOB,则PQPB10t,BQt,HP(10t),QH;PQ2PH2+QH2,(10t)2(10t)2+()2;解得综上所述,求出满足条件的t值有三个:或5或【点睛】本题考查了待定系数法求解析式,顶点坐标的求法,圆的切线的性质,数形结合分类讨论是本题的关键2、(1)y-x2+2x+3;(2)k=-2,面积最小为;(3)m=或【分析】(1)令x=0,解得

20、y=b,求出OBOCb,OA=,得到A(-,0),C(0,b),B(b,0),把A(-,0),B(b,0)代入yax22ax+b即可求解;(2)设直线EH的解析式为y=nx+7,联立,得,根据直线EH与函数只有一个交点,求出H(2,3),再得到直线GH过定点M(2,-5),利用SFGH=SFMH+SGMH=4,求出的最小值即可求解;(3)当以EF为直径的与x轴相切时,x轴上存在点P即切点,使EPF=90,设点E,F的坐标分别为F(x1,y1)、F(x2,y2),求出平移后的抛物线的解析式为y-(x-m)2+2m+2,联立得到,求出x1+x2=2m+2,x1x2=,y1+y2=4m-6,表示出点

21、R(m-1,2m-3),求出2,利用PR=,得到EF2=4PR2,列出关于m的方程即可求解【详解】(1)yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,令x=0,解得y=bCO=bOBOCb,OA=A(-,0),C(0,b),B(b,0)把A(-,0),B(b,0)代入yax22ax+b得,解得抛物线解析式为y-x2+2x+3;(2)点E的坐标为(0,7),可设直线EH的解析式为y=nx+7联立,得直线EH与函数只有一个交点,且在对称轴右侧=解得n1=-2,n2=6(舍去)直线EH的解析式为y=-2x+7解方程得x1=x2=2H(2,3)直线GH解析

22、式ykx2k5=k(x-2)-5直线GH过定点M(2,-5)如图,连接HMH(2,3)HMx轴,MH=8设F(x2,y2)、G(x1,y1)联立,得到x1+x2=2-k,x1x2=-2k-8SFGH=SFMH+SGMH=4故当最小时,SFGH最小2=故当k=-2时,2的最小值为32故的最小值为此时SFGH最小为4=;(3)当以EF为直径的与x轴相切时,x轴上存在点P即切点,使EPF=90如图,与x轴相切时,切点为点P,y-x2+2x+3=-(x-1)2+4设点E,F的坐标分别为F(x1,y1)、F(x2,y2),当平移后的抛物线的顶点的横坐标为m时,则抛物线向右平移了m-1个单位,故相应地纵坐

23、标向上平移了2(m-1)=个单位,则平移后的抛物线的解析式为y-(x-m)2+4+2(m-1)=-(x-m)2+2m+2联立得到x1+x2=2m+2,x1x2=y1+y2=2(x1+x2)-2=4m-6,则点R(m-1,2m-3),2=(2m+2)2-4()=16,PR=则EF2=4PR2EF2=2+2=52=516=4PR2PR=2m-3516=4(2m-3)2解得m=当m=或m=符合题意【点睛】此题主要考查二次函数综合运用,解题的关键是熟知圆的切线的性质、勾股定理、二次函数的图像与性质、一元二次方程相关性质3、(1)见解析;(2),的半径长为【分析】连接,由圆周角定理可得,结合等腰三角形的

24、性质知,再根据知,从而由可得ODFG,即可得证;连接BE根据勾股定理得到DF=CD2-CF2=(25)2-22=4,根据圆周角定理得到AEB=CEB=90,根据三角形中位线的性质得到BE=2DF=8,设的半径长为,根据勾股定理即可得到结论【详解】证明:连接,为的直径,即,又,ODFG,是圆的半径,直线与相切;连接BD=25,CD=BD=25,DF=CD2-CF2=(25)2-22=4,是直径,AEB=CEB=90,DF/BE,EF=FC=2,BE=2DF=8,设的半径长为,AB=AC=2r,AE=2r-4,AB2=AE2+BE2,(2r)2=(2r-4)2+82,的半径长为【点睛】本题主要考查

25、圆的切线的判定,圆周角定理,勾股定理,中位线定理等知识点,熟练掌握圆周角定理和勾股定理是解题的关键4、(1)证明见解析;(2)证明见解析;(3)【分析】(1)连接,由题意知,;可得,进而说明是的切线(2)连接,同弧所对圆周角相等,有,进而说明(3)勾股定理知,有,知,;在中用勾股定理求出的长,求出的长,通过角度关系得出,故有,进而求出的值【详解】解:(1)证明:如图所示,连接,为半径是的内接三角形,且是直径在和中,有又即是半径是的切线(2)证明:如图连接为直径(3)在中在和中,设,在中,有,解得,【点睛】本题考查了切线、圆周角、三角形全等、等腰三角形、勾股定理等知识解题的关键与难点在于角度等量关系的转化5、【分析】连接OA,根据O的半径为10,OM:MC3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可【详解】解:如图,连接OAOM:MC3:2,OC10,OM=6OCAB,OMA90,AB2AM在RtAOM中,AO10,OM6,AM8AB2AM =16【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁