2021-2022学年浙教版初中数学七年级下册第五章分式同步训练练习题(无超纲).docx

上传人:知****量 文档编号:28155077 上传时间:2022-07-26 格式:DOCX 页数:14 大小:207.28KB
返回 下载 相关 举报
2021-2022学年浙教版初中数学七年级下册第五章分式同步训练练习题(无超纲).docx_第1页
第1页 / 共14页
2021-2022学年浙教版初中数学七年级下册第五章分式同步训练练习题(无超纲).docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2021-2022学年浙教版初中数学七年级下册第五章分式同步训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第五章分式同步训练练习题(无超纲).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第五章分式同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若,则( )ABCD2、关于的分式方程有解,则字母的取值范围是( )A或BCD且3、计算的结果为( )A1BCD4、当分式的值为0时,x的值为( )A0B2C0或2D 5、计算的正确结果是( )A2021BCD6、新冠病毒的直径约为125纳米,已知1纳米毫米,则125纳米用科学记数法表示为( )A毫米B毫米C毫米D毫米7、已知(),则分式的值为( )A2B2C3D38、已知1纳米,那么用科学记数法表示为( )

2、ABCD9、空气的密度是1.293103g/cm3,用小数把它表示出来是()g/cm3A0.0001293B0.001293C0.01293D0.129310、代数式的家中来了几位客人:、,其中属于分式家族成员的有( )A1个B2个C3个D4个二、填空题(5小题,每小题4分,共计20分)1、水珠不断滴在一块石头上,经过若干年,石头上形成了一个深为的小洞,则数字0.000048用科学记数法可表示_2、如果分式有意义,那么x的取值范围是 _3、以下结论:(ab)2(ba)2;(ab)3(ba)3;|ab|ba|;(ab)2a2b2;,其中正确结论的序号为 _4、已知(x1)x+21,则整数x_5、

3、已知a、b为实数,且,设,则M、N的大小关系是M_ N(填=、)三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)2、计算与化简:(1);(2);(3)3、合肥都市圈建立以来,政府不断的加大对都市圈内的交通投入,某工程队承包修建一条1800m的道路,为了尽快实现合肥都市圈“1小时通勤圈”和“1小时生活圈”,该工程队采用新的施工方式,实际每天修建道路的长度是原计划的1.5倍,结果提前12天完成了任务,问原计划每天修建道路多少m?4、计算:5、先化简,再求值:(),其中a1-参考答案-一、单选题1、A【分析】先根据有理数的乘方,零指数幂计算,然后比较大小,即可求解【详解】解:,故

4、选:A【点睛】本题主要考查了有理数的乘方运算,零指数幂,有理数的比较大小,熟练掌握有理数的乘方运算法则,零指数幂法则是解题的关键2、D【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x0且x2建立不等式即可求a的取值范围【详解】解:,去分母得:5(x-2)=ax,去括号得:5x-10=ax,移项,合并同类项得:(5-a)x=10,关于x的分式方程有解,5-a0,x0且x2,即a5,系数化为1得:,且,即a5,a0,综上所述:关于x的分式方程有解,则字母a的取值范围是a5,a0,故选:D【点睛】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解

5、列出关于a的不等式另外,解答本题时,容易漏掉5-a0,这应引起同学们的足够重视3、B【分析】先把分母2a变形为(a2),即通分,再按分式的加减运算法则计算即可【详解】解:原式=;故选:B【点睛】此题考查的是分式的加减运算,化为同分母进行计算是解决此题关键4、A【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案【详解】解:分式值为0,2x0,解得:x0故选:A【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零是解题的关键5、D【分析】根据负整数指数幂的性质计算即可;【详解】;故选D【点睛】本题主要考查了负整数指数幂,准确计算是解题的关键6、C【分析】科学记数法的表示

6、形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:125纳米=1251.010-6毫米=12510-6毫米=1.2510-4毫米,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值7、C【分析】由题意可知x=3y,然后根据因式分解法进行化简,再将x=3y代入原式即可求出答案【详解】解:x-3y=0,x=3y,原式= 故选:C【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x换成3y8

7、、C【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解: ,故选C【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义9、B【分析】把的小数点向左移3位即可【详解】解:故选B【点睛】本题考查了还原科学记数法表示的小数,熟练掌握科学记数法的意义是解题的关键10、C【分析】根据分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,其中A称为分子

8、,B称为分母,据此判断即可【详解】解:属于分式的有:、,故选:C【点睛】本题考查了分式的定义,熟知定义是解本题的关键二、填空题1、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000048=4.810-5故答案为:4.810-5【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、x5【分析】根据分式有意义的条件可得x+50,即可得出答案【详解】解:由题意得:x

9、+50,解得:x5,故答案为:x5【点睛】本题考查了分式有意义的条件,分式有无意义的判断方法,分式有意义的条件:分式的分母不等于0,分式无意义的条件:分式的分母等于03、【分析】根据乘方的意义判断和,根据绝对值的概念判断,根据完全平方公式判断,根据异分母分式减法运算法则判断【详解】解:(ab)2(ba)2(ba)2,正确,故符合题意;(ab)3(ba)3(ba)3,原结论错误,故不符合题意;|ab|(ba)|ba|,正确,故符合题意;(ab)2a22ab+b2,原结论错误,故不符合题意;,原结论错误,故不符合题意;正确结论的序号为,故答案为:【点睛】本题考查绝对值的意义,乘方的运算,分式的加减

10、法,完全平方公式,理解乘方和绝对值的意义,掌握完全平方公式(ab)2a22ab+b2的结构是解题关键4、2、0、2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案【详解】解:(x1)x+21,x+20且x10或x11或x11且x+2为偶数,解得:x2、x2或x0,故x2或2或0故答案为:2、0、2【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确分类讨论是解题关键5、=【分析】本题只需要先对M、N分别进行化简,再把代入即可比较M、N的大小【详解】解:,MN,故答案为:【点睛】本题考查了分式的混合运算,在解题时要注意先对分式进行化简,再代入求值即可三、解答题1、(1

11、);(2)【分析】(1)直接利用度分秒换算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则计算得出答案【详解】解:(1)原式(2)原式【点睛】此题主要考查了同底数幂的乘除运算、度分秒换算,正确掌握相关运算法则是解题关键2、(1);(2);(3)【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质、有理数的乘方运算法则分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则分别计算得出答案;(3)直接利用乘法公式以及单项式乘多项式、多项式乘多项式分别计算得出答案【详解】解:(1);(2);(3)【点睛】本题主要考查了实数运算以及整式的混合运算,正确掌握相关运算法则是解题

12、关键3、原计划每天修建道路50m【分析】解析设原计划每天修建道路xm,则实际每天修建道路1.5xm,根据工作时间工作总量工作效率结合实际比原计划提前12天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设原计划每天修建道路xm,则实际每天修建道路1.5xm,依题意,得:,解得:x50,经检验,x50是原方程的解,且符合题意答:原计划每天修建道路50m【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.4、5【分析】先化简绝对值、计算零指数幂、负整数指数幂、去括号,再计算加减法即可得【详解】解:原式,【点睛】本题考查了零指数幂、负整数指数幂等知识点,熟练掌握各运算法则是解题关键5、,-1【分析】先算括号内的减法,再把除法变成乘法,求出结果,最后代入求出即可【详解】解:原式 ,当a1时,原式【点睛】本题考查了分式的混合运算,对于分式的混合运算,应注意运算顺序:先算乘方,再算乘除,最后算加减,有括号的要先算括号内的此外,也应仔细观察式子的特点,灵活选择简便的方法计算,如使用运算律、公式等

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁