《2021-2022学年北师大版八年级数学下册第四章因式分解难点解析试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第四章因式分解难点解析试题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2
2、Dx4y4(x2y2)(x2y2)2、下列等式从左到右的变形,属于因式分解的是( )ABCD3、下列等式中,从左到右的变形是因式分解的是( )ABCD4、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)5、在实数范围内因式分解2x23xyy2,下列四个答案中正确的是()A(xy)(xy)B(x+y)(x+y)C2(xy)(xy)D2(x+y)(x+y)6、下列多项式中,不能用公式法因式分解的是( )ABCD7、若、为一个三角形的三边长,则式子的值( )A一定为正数B一定为负数C可能是正数
3、,也可能是负数D可能为08、已知m1n,则m3+m2n+2mn+n2的值为( )A2B1C1D29、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD10、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若多项式5x217x12可因式分解成(xa)(bxc),其中a、b、c均为整数,则a,b,c的中位数是_2、在实数范围内分解因式:x23xyy2_3、把多项式2a32a
4、分解因式的结果是_4、分解因式:_5、a、b、c是等腰ABC的三边长,其中a、b满足a2+b24a10b+290,则ABC的周长为 _三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1);(2)2、分解因式:3、分解因式:(1)2a38ab2;(2)(a2+1)24a24、因式分解:5、阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式进行因式分解的过程解:设,原式第一步第二步第三步第四步(1)小影同学第二步到第三步运用了因式分解的_填写选项A.提取公因式B.平方差公式C.两数和的平方公式D.两数差的平方公
5、式(2)小影同学因式分解的结果是否彻底?_填彻底或不彻底;若不彻底,请你帮她直接写出因式分解的最后结果_(3)请你模仿以上方法尝试对多项式进行因式分解-参考答案-一、单选题1、B【分析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底2、B【分析】根据因式分解的定义直接判断即可【详解】解:A等式从左到右的变形属于整式乘法,不属于因式分解,故
6、本选项不符合题意; B等式从左到右的变形属于因式分解,故本选项符合题意;C没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解3、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是
7、整式乘法,不是因式分解,故D错误【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键4、C【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式5、C【分析】首先解关于x的方程,进而分解因式得出即可【详解】解:当2x23xyy20时,解
8、得:x1y,x2y,则2x23xyy22(xy)(xy)故选:C【点睛】此题主要考查了实数范围内分解因式,正确解方程是解题关键6、D【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.7、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解【详解】解:原式=(a-c+b)(a-c-b),两边之和大于第三边,两边之差小于第三边,a
9、-c+b0,a-c-b0,两数相乘,异号得负,代数式的值小于0故选:B【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和第三边,任意两边之差第三边8、C【分析】先化简代数式,再代入求值即可;【详解】m1n,m+n1,m3+m2n+2mn+n2m2(m+n)+2mn+n2m2+2mn+n2(m+n)2121,故选:C【点睛】本题主要考查了代数式求值,准确计算是解题的关键9、D【分析】根据十字相乘法把各个多项式因式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能
10、找到两数,使,且,那么就可以进行如下的因式分解,即10、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键二、填空题1、4【分析】首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值【详解】利用十字交乘法将5x
11、2+17x-12因式分解,可得:5x2+17x-12=(x+4)(5x-3)=(xa)(bxc),的中位数是4a,b,c的中位数是4故答案为:4【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键2、【分析】先利用配方法,再利用平方差公式即可得【详解】解:=故答案为:【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等3、【分析】直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可【详解】解:2a32a= =;故答案为2a(a+1)(a-1)【点睛】
12、此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键4、【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解【详解】解:故答案为:【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键5、12【分析】先利用完全平方公式把a2+b24a10b+290化为再利用非负数的性质求解 再分两种情况讨论:当为腰时,当为底时,结合三角形的三边关系,从而可得答案.【详解】解: a2+b24a10b+290, a、b、c是等腰ABC的三边长,当为腰时,则另一腰 此时 三角形不存在,舍去,当为底时,则腰 此时 三角形存在,ABC的周长为 故答案为:12
13、【点睛】本题考查的是利用完全平方公式分解因式,非负数的性质,三角形三边的关系,等腰三角形的定义,掌握以上基础知识是解题的关键.三、解答题1、(1);(2)【分析】(1)提取m,后用完全平方公式分解;(2)提取a-b,后用平方差公式分解【详解】解:(1)原式(2)原式【点睛】本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键2、【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可【详解】解:原式=【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键3、(1);(2)【分析】(1)综合利用提公因式法和平方差公式分解因式即可得;(2)综合利用平
14、方差公式()和完全平方公式()分解因式即可得【详解】解:(1)原式,;(2)原式,【点睛】本题考查了因式分解,熟练掌握乘法公式是解题关键4、【分析】先提公因式,然后利用十字相乘法分解因式,然后利用平方差公式分解因式即可求解【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等5、(1) ;(2)不彻底,;(3)【分析】(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;(3)根据材料,用换元法进行分解因式即可【详解】解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,故选:C;(2)小影同学因式分解的结果不彻底,原式 ,故答案为:不彻底,;(3)设,原式,【点睛】本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键