《2021-2022学年北师大版八年级数学下册第四章因式分解定向练习试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第四章因式分解定向练习试卷(无超纲带解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a22a10,则a42a32a1等于( )A0B1C2D32、下列各式的因式分解中正确的是( )ABCD3、
2、把多项式分解因式,其结果是( )ABCD4、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD5、下列各式从左到右的变形中,是因式分解的是( )ABCD6、运用平方差公式对整式进行因式分解时,公式中的可以是( )ABCD7、下列各式从左到右进行因式分解正确的是()A4a24a+14a(a1)+1Bx22x+1(x1)2Cx2+y2(x+y)2Dx24y(x+4y)(x4y)8、下列等式从左到右的变形,属于因式分解的是( )ABCD9、下列各式能用完全平方公式进行因式分解的是( )A9x2-6x+1Bx2+x+1Cx2+2x-1Dx2-910、下列多项式中能
3、用平方差公式分解因式的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、分解因式:2x24x_3、分解因式:_4、分解因式:3ab6a2_5、分解因式:_三、解答题(5小题,每小题10分,共计50分)1、 ((1)(2)小题计算,(3)(4)小题因式分解)(1);(2)(x2y)(3x+2y);(3)9(xy)+4(yx) ; (4) a+2x+ 2、分解因式:3、对于多项式x35x2+11x10,如果我们把x2代入此多项式,发现多项式x35x2+11x100,这时可以断定多项式中有因式(x2),于是我们可以把多项式写成:x35x2+11x
4、10(x2)(x2+mx+n),以上这种因式分解的方法叫试根法(1)求式子中m、n的值;(2)用试根法对多项式x35x2+3x+9进行因式分解4、分解因式(1) (2)(3)5、分解因式:-参考答案-一、单选题1、C【分析】由a22a10,得出a22a1,逐步分解代入求得答案即可【详解】解:a22a10,a22a1,a42a32a+1a2(a22a)2a+1a22a+11+12故选:C【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键2、D【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解【详解】A a2+abac=a(a-b+c
5、) ,故本选项错误;B 9xyz6x2y2=3xy(3z2xy),故本选项错误;C 3a2x6bx+3x=3x(a22b+1),故本选项错误; D ,故本选项正确故选:D【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键3、B【分析】因为6954,693,所以利用十字相乘法分解因式即可【详解】解:x2+3x54(x6)(x9);故选:B【点睛】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程4、D【分析】根据十字相乘法把各个多项式因式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:
6、D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即5、D【分析】因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;不是化为整式的积的形式,故B不符合题意;不是化为整式的积的形式,故C不符合题意;是因式分解,故D符合题意;故选D【点睛】本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.6、C【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练
7、掌握平方差公式是解题的关键7、B【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a24a+1,故该选项不符合题意;B. x22x+1(x1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x24y(x+4y)(x4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键8、B【分析】根据因式分解的定义直接判断即可【详解】解:A等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B等式从左到右的变形
8、属于因式分解,故本选项符合题意;C没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解9、A【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式
9、的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键10、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键二、填空题1、【分析】直接根据提公因式法因式分解即可【详解】
10、解:,故答案为:【点睛】本题考查了提公因式法因式分解,准确找到公因式是解本题的关键2、#【分析】根据提公因式法因式分解即可【详解】解:2x24x故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键3、【分析】会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解【详解】解:,故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式4、【分析】利用提公因式法进行因式分解即可得【详解】解:原式,故答案为:【点睛】本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键5、#【分析】先提取公因式5,后用和的完全平
11、方公式即可【详解】,故答案为【点睛】本题考查了因式分解,熟练掌握先提取公因式,后用公式的解题策略是解题的关键三、解答题1、(1)-5;(2)28;(3);(4)a【分析】(1)根据=2, ,整理计算即可;(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;(4) 先提取公因式a,后套用和的完全平方公式分解即可【详解】解:(1) =2+1-9+1-5;(2)(x2y)(3x+2y)3+2xy6xy4+4xy428;(3)9(xy)+4(yx)= =;(4)a+2x+a(+2ax+)a【点睛】本题考查了绝对值,零指
12、数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键2、【分析】先提取公因式,然后利用十字相乘和平方差公式分解因式即可【详解】解:原式=【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法3、(1);(2)【分析】(1)把由多项式乘以多项式展开,与对应相等即可得出答案;(2)把代入中得,故可把写成,同(1)解出、的值,代入即可进行因式分解【详解】(1),解得:;(2)把代入中得:,解得:,【点睛】本题考查因式分解,掌握试根法的定义是解题的关键4、(1);(2);(3)【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键5、x(x3)(x3)【分析】先提取公因式x,然后利用平方差公式分解因式即可【详解】解:x39xx(x29) x(x3)(x3)【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键