2022年高一数学高中数学圆的方程专题 .pdf

上传人:Q****o 文档编号:28024511 上传时间:2022-07-26 格式:PDF 页数:12 大小:474.24KB
返回 下载 相关 举报
2022年高一数学高中数学圆的方程专题 .pdf_第1页
第1页 / 共12页
2022年高一数学高中数学圆的方程专题 .pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2022年高一数学高中数学圆的方程专题 .pdf》由会员分享,可在线阅读,更多相关《2022年高一数学高中数学圆的方程专题 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1高一数学高中数学圆的方程专题(四个课时)类型一:圆的方程例 1 求过两点)4,1(A、)2,3(B且圆心在直线0y上的圆的标准方程并判断点)4,2(P与圆的关系分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆的位置关系,只须看点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内解法一:(待定系数法)设圆的标准方程为222)()(rbyax圆心在0y上,故0b圆的方程为222)(ryax又该圆过)4,1(A、)2,3(B两点22224)3(16)1(rara解之得:1a,202r所以所求圆的方程为20

2、) 1(22yx解法二:(直接求出圆心坐标和半径)因为圆过)4,1 (A、)2,3(B两点,所以圆心C必在线段AB的垂直平分线l上,又因为13124ABk,故l的斜率为1,又AB的中点为)3,2(,故AB的垂直平分线l的方程为:23xy即01yx又知圆心在直线0y上,故圆心坐标为)0,1(C半径204) 11 (22ACr故所求圆的方程为20)1(22yx又点)4,2(P到圆心)0,1(C的距离为rPCd254)12(22点P在圆外例 2 求半径为4,与圆042422yxyx相切,且和直线0y相切的圆的方程分析: 根据问题的特征,宜用圆的标准方程求解解: 则题意,设所求圆的方程为圆222)()

3、(rbyaxC:圆C与直线0y相切,且半径为4,则圆心C的坐标为)4,(1aC或)4,(2aC又已知圆042422yxyx的圆心A的坐标为)1,2(,半径为 3若两圆相切,则734CA或134CA(1)当)4,(1aC时,2227)14()2(a,或2221) 14()2(a(无解 ),故可得1022a所求圆方程为2224)4()1022(yx,或2224)4()1022(yx(2)当)4,(2aC时,2227)14()2(a,或2221) 14()2(a(无解 ),故622a所求圆的方程为2224)4()622(yx,或2224)4()622(yx例 3 求经过点)5,0(A,且与直线02y

4、x和02yx都相切的圆的方程名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 12 页 - - - - - - - - - 2分析: 欲确定圆的方程需确定圆心坐标与半径,由于所求圆过定点A,故只需确定圆心坐标又圆与两已知直线相切,故圆心必在它们的交角的平分线上解: 圆和直线02 yx与02yx相切,圆心C在这两条直线的交角平分线上,又圆心到两直线02yx和02yx的距离相等5252yxyx两直线交角的平分线方程是03yx或03yx又圆过点)5,0(A,圆心C只能在直线03y

5、x上设圆心)3,(ttCC到直线02yx的距离等于AC,22)53(532tttt化简整理得0562tt解得:1t或5t圆心是)3,1(,半径为5或圆心是)15,5(,半径为55所求圆的方程为5)3() 1(22yx或125)15()5(22yx例 4、 设圆满足: (1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为1:3,在满足条件 (1)(2)的所有圆中,求圆心到直线02yxl:的距离最小的圆的方程分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通

6、过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程解法一: 设圆心为),(baP,半径为r则P到x轴、y轴的距离分别为b和a由题设知:圆截x轴所得劣弧所对的圆心角为90,故圆截x轴所得弦长为r2222br又圆截y轴所得弦长为2122ar又),(baP到直线02yx的距离为52bad2225badabba4422)(242222baba1222ab当且仅当ba时取“ =”号,此时55mind这时有1222abba11ba或11ba又2222br,故所求圆的方程为2) 1()1(22yx或2)1()1(22yx解法二: 同解法一,得52baddba522225544dbdb

7、a将1222ba代入上式得:01554222dbdb上述方程有实根,故0)15(82d,55d将55d代入方程得1b又1222ab1a由12ba知a、b同号故所求圆的方程为2) 1()1(22yx或2)1() 1(22yx名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 12 页 - - - - - - - - - 3类型二:切线方程、切点弦方程、公共弦方程例 5已知圆422yxO:,求过点42,P与圆O相切的切线解: 点42,P不在圆O上,切线PT的直线方程可设为42xk

8、y根据rd21422kk解得43k所以4243xy即01043yx因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在易求另一条切线为2x例 6 两圆0111221FyExDyxC:与0222222FyExDyxC :相交于A、B两点,求它们的公共弦AB所在直线的方程分析: 首先求A、B两点的坐标,再用两点式求直线AB的方程,但是求两圆交点坐标的过程太繁为了避免求交点,可以采用“设而不求”的技巧解: 设两圆1C、2C的任一交点坐标为),(00yx,则有:0101012020FyExDyx0202022020FyExDyx得:0)()(21021021FFyEExDDA、B的坐标满足方

9、程0)()(212121FFyEExDD方程0)()(212121FFyEExDD是过A、B两点的直线方程又过A、B两点的直线是唯一的两圆1C、2C的公共弦AB所在直线的方程为0)()(212121FFyEExDD练习:1求过点(3,1)M,且与圆22(1)4xy相切的直线l的方程 解:设切线方程为1(3)yk x,即310kxyk,圆心(1,0)到切线l的距离等于半径2,22|31|21kkk,解得34k, 切线方程为31(3)4yx,即34130 xy,当过点M的直线的斜率不存在时,其方程为3x,圆心(1,0)到此直线的距离等于半径2,故直线3x也适合题意。所以,所求的直线l的方程是341

10、30 xy或3x2、过坐标原点且与圆0252422yxyx相切的直线的方程为解:设直线方程为kxy,即0ykx.圆方程可化为25)1()2(22yx,圆心为( 2,-1) ,半径为210.依题意有2101122kk,解得3k或31k,直线方程为xy3或xy31. 3、已知直线0125ayx与圆0222yxx相切,则a的值为. 解:圆1) 1(22yx的圆心为( 1,0) ,半径为1,1125522a,解得8a或18a. 类型三:弦长、弧问题例 8、求直线063:yxl被圆042:22yxyxC截得的弦AB的长 . 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - -

11、 - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 12 页 - - - - - - - - - 4例 9、直线0323yx截圆422yx得的劣弧所对的圆心角为解:依题意得,弦心距3d,故弦长2222drAB,从而 OAB 是等边三角形,故截得的劣弧所对的圆心角为3AOB. 例 10、求两圆0222yxyx和522yx的公共弦长类型四:直线与圆的位置关系例 11、已知直线0323yx和圆422yx,判断此直线与已知圆的位置关系. 例 12、若直线mxy与曲线24xy有且只有一个公共点,求实数m的取值范围 . 解:曲线24xy表示半圆)0(422yyx,利

12、用数形结合法,可得实数m的取值范围是22m或22m. 例 13 圆9)3()3(22yx上到直线01143yx的距离为 1 的点有几个?分析: 借助图形直观求解或先求出直线1l、2l的方程,从代数计算中寻找解答解法一: 圆9)3()3(22yx的圆心为)3,3(1O,半径3r设圆心1O到直线01143yx的距离为d,则324311343322d如图,在圆心1O同侧,与直线01143yx平行且距离为1 的直线1l与圆有两个交点,这两个交点符合题意又123dr与直线01143yx平行的圆的切线的两个切点中有一个切点也符合题意符合题意的点共有3 个解法二: 符合题意的点是平行于直线01143yx,且

13、与之距离为1 的直线和圆的交点设所求直线为043myx,则1431122md,511m,即6m,或16m,也即06431yxl :,或016432yxl :设圆9)3()3(221yxO:的圆心到直线1l、2l的距离为1d、2d,则34363433221d,143163433222d1l与1O相切, 与圆1O有一个公共点;2l与圆1O相交, 与圆1O有两个公共点即符合题意的点共3 个练习 1:直线1yx与圆)0(0222aayyx没有公共点,则a的取值范围是名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - -

14、 - - - - 第 4 页,共 12 页 - - - - - - - - - 5解:依题意有aa21,解得1212a.0a,120a. 练习 2:若直线2kxy与圆1)3()2(22yx有两个不同的交点,则k的取值范围是. 解:依题意有11122kk,解得340k,k的取值范围是)34,0(. 3、圆034222yxyx上到直线01yx的距离为2的点共有() (A)1 个(B)2 个( C) 3 个( D) 4 个分析:把034222yxyx化为82122yx,圆心为21,半径为22r,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选 C4 、 过 点43,P作 直 线l

15、, 当 斜 率 为 何 值 时 , 直 线l与 圆42122yxC:有公共点,如图所示分析: 观察动画演示,分析思路解: 设直线l的方程为34xky即043kykx根据rd有214322kkk整理得0432kk解得340k类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例 14、判断圆02662:221yxyxC与圆0424:222yxyxC的位置关系,例 15:圆0222xyx和圆0422yyx的公切线共有条。解:圆1)1(22yx的圆心为)0, 1(1O, 半径11r, 圆4)2(22yx的圆心为)2, 0(2O, 半径22r,1, 3,5122121rrrrOO.212112

16、rrOOrr,两圆相交 .共有 2 条公切线。练习1、 若 圆042222mmxyx与 圆08442222mmyxyx相 切 , 则实 数m的 取 值 集 合是. 解:圆4)(22ymx的圆心为)0 ,(1mO,半径21r,圆9)2()1(22myx的圆心为)2, 1(2mO,半 径32r, 且 两 圆 相 切 , 2121rrOO或1221rrOO, 5)2()1(22mm或1)2()1(22mm, 解 得512m或2m, 或0m或25m, 实 数m的 取 值 集 合 是P E O y x 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - -

17、- - - 名师精心整理 - - - - - - - 第 5 页,共 12 页 - - - - - - - - - 62,0,25,512. 2、求与圆522yx外切于点)2, 1(P,且半径为52的圆的方程 . 解 : 设 所 求 圆 的 圆 心 为),(1baO, 则 所 求 圆 的 方 程 为20)()(22byax. 两 圆 外 切 于 点P, 131OOOP,),(31)2, 1(ba,6,3 ba,所求圆的方程为20)6()3(22yx. 类型六:圆中的对称问题例 16、圆222690 xyxy关于直线250 xy对称的圆的方程是例 17自点33,A发出的光线l射到x轴上,被x轴反

18、射, 反射光线所在的直线与圆074422yxyxC:相切( 1)求光线l和反射光线所在的直线方程(2)光线自A到切点所经过的路程分析、 略解: 观察动画演示, 分析思路 根据对称关系, 首先求出点A的对称点A的坐标为33,其次设过A的圆C的切线方程为33xky根据rd,即求出圆C的切线的斜率为34k或43k进一步求出反射光线所在的直线的方程为0334yx或0343yx最后根据入射光与反射光关于x轴对称,求出入射光所在直线方程为0334yx或0343yx光路的距离为MA,可由勾股定理求得7222CMCAMA类型七:圆中的最值问题例 18:圆0104422yxyx上的点到直线014yx的最大距离与

19、最小距离的差是解:圆18)2()2(22yx的圆心为( 2,2) ,半径23r,圆心到直线的距离rd25210,直线与圆相离,圆上的点到直线的最大距离与最小距离的差是262)()(rrdrd. 例 19(1)已知圆1)4()3(221yxO:,),(yxP为圆O上的动点,求22yxd的最大、最小值(2)已知圆1)2(222yxO :,),(yxP为圆上任一点求12xy的最大、最小值,求yx2的最大、最小值分析: (1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决解: (1)(法 1)由圆的标准方程1)4()3(22yx可设圆的参数方程为,sin4,cos3yx(是参数

20、)则2222sinsin816coscos69yxd)cos(1026sin8cos626(其G O B N M y A x 图 3 C A名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 12 页 - - - - - - - - - 7中34tan) 所以361026maxd,161026mind(法 2)圆上点到原点距离的最大值1d等于圆心到原点的距离1d加上半径1,圆上点到原点距离的最小值2d等于圆心到原点的距离1d减去半径 1所以6143221d4143222d所以

21、36maxd16mind(2) (法 1)由1)2(22yx得圆的参数方程:,sin,cos2yx是参数则3cos2sin12xy令t3cos2sin,得tt32cossin,tt32)sin(121)sin(1322tt433433t所以433maxt,433mint即12xy的最大值为433, 最小值为433 此时)cos(52sin2cos22yx 所以yx2的最大值为52,最小值为52(法 2)设kxy12,则02kykx由于),(yxP是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值由11222kkkd,得433k所以12xy的最大值为433,最小值为433令

22、tyx2,同理两条切线在x轴上的截距分别是最大、最小值由152md,得52m所以yx2的最大值为52,最小值为52例 20:已知)0,2(A,)0 ,2(B,点P在圆4)4()3(22yx上运动, 则22PBPA的最小值是. 解:设),(yxP,则828)(2)2()2(222222222OPyxyxyxPBPA.设圆心为)4 ,3(C,则325minrOCOP,22PBPA的最小值为268322. 练习:1、已知点),(yxP在圆1) 1(22yx上运动 . (1)求21xy的最大值与最小值; (2)求yx2的最大值与最小值. 名师资料总结 - - -精品资料欢迎下载 - - - - - -

23、 - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 12 页 - - - - - - - - - 8解: (1)设kxy21,则k表示点),(yxP与点( 2,1)连线的斜率 .当该直线与圆相切时,k取得最大值与最小值 .由1122kk,解得33k,21xy的最大值为33,最小值为33. (2)设myx2,则m表示直线myx2在y轴上的截距 . 当该直线与圆相切时,m取得最大值与最小值.由151m,解得51m,yx2的最大值为51,最小值为51. 2、设点),(yxP是圆122yx是任一点,求12xyu的取值范围分析一: 利用圆上任一点的

24、参数坐标代替x、y,转化为三角问题来解决解法一: 设圆122yx上任一点)sin,(cosP则有cosx,siny)2,01cos2sinu,2sincosuu)2(sincosuu即2)sin(12uu(utan)1)2()sin(2uu又1)sin(1122uu解之得:43u分析二:12xyu的几何意义是过圆122yx上一动点和定点)2,1(的连线的斜率,利用此直线与圆122yx有公共点,可确定出u的取值范围解法二: 由12xyu得:)1(2xuy,此直线与圆122yx有公共点,故点)0,0(到直线的距离1d1122uu解得:43u另外,直线) 1(2xuy与圆122yx的公共点还可以这样

25、来处理:由1)1(222yxxuy消去y后得:0)34()42()1(2222uuxuuxu,此方程有实根,故0)34)(1(4)42(2222uuuuu,解之得:43u3、已知点)2, 4(),6, 2(),2,2(CBA,点P在圆422yx上运动,求222PCPBPA的最大值和最小值 .类型八:轨迹问题例 21、基础训练:已知点M与两个定点)0 ,0(O,)0 ,3(A的距离的比为21,求点M的轨迹方程 . 例 22、已知线段AB的端点B的坐标是 (4,3) ,端点A在圆4)1(22yx上运动, 求线段AB的中点M的轨迹方程 . 例 23 如图所示,已知圆422yxO:与y轴的正方向交于A

26、点,点B在直线2y上运动,过B做圆O的切线,切点为C,求ABC垂心H的轨迹名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 12 页 - - - - - - - - - 9分析: 按常规求轨迹的方法,设),(yxH,找yx ,的关系非常难由于H点随B,C点运动而运动,可考虑H,B,C三点坐标之间的关系解: 设),(yxH,),(yxC,连结AH,CH,则BCAH,ABCH,BC是切线BCOC,所以AHOC /,OACH /,OCOA,所以四边形AOCH是菱形所以2OACH,

27、得.,2xxyy又),(yxC满足422yx,所以)0(4)2(22xyx即是所求轨迹方程说明: 题目巧妙运用了三角形垂心的性质及菱形的相关知识采取代入法求轨迹方程做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法例 24 已知圆的方程为222ryx,圆内有定点),(baP,圆周上有两个动点A、B,使PBPA,求矩形APBQ的顶点Q的轨迹方程分析: 利用几何法求解,或利用转移法求解,或利用参数法求解解法一: 如图,在矩形APBQ中,连结AB,PQ交于M,显然ABOM,PQAB,在直角三角形AOM中,若设),(yxQ,则)2,2(byaxM由

28、222OAAMOM,即22222)()(41)2()2(rbyaxbyax,也即)(222222baryx,这便是Q的轨迹方程解法二:设),(yxQ、),(11yxA、),(22yxB, 则22121ryx,22222ryx又22ABPQ,即)(22)()()()(2121222122122yyxxryyxxbyax又AB与PQ的中点重合, 故21xxax,21yyby, 即)(22)()(2121222yyxxrbyax,有)(222222baryx这就是所求的轨迹方程解法三: 设)sin,cos(rrA、)sin,cos(rrB、),(yxQ,由于APBQ为矩形,故AB与PQ的中点重合,即

29、有coscosrrax,sinsinrrby,又由PBPA有1cossincossinarbrarbr联立、消去、,即可得Q点的轨迹方程为)(222222baryx练习:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 12 页 - - - - - - - - - 101、由动点P向圆122yx引两条切线PA、PB,切点分别为A、B,APB=600,则动点P的轨迹方程是. 解:设),(yxP.APB=600,OPA=300.APOA,22OAOP,222yx,化简得422y

30、x,动点P的轨迹方程是422yx. 练习巩固:设)0)(0 ,(),0 ,(ccBcA为两定点,动点P到A点的距离与到B点的距离的比为定值)0(aa,求P点的轨迹 . 解:设动点P的坐标为),(yxP.由)0(aaPBPA,得aycxycx2222)()(,化简得0)1()1(2)1()1(2222222acxacyaxa. 当1a时,化简得01)1(222222cxaacyx,整理得222222)12()11(aacycaax;当1a时,化简得0 x. 所以当1a时,P点的轨迹是以)0,11(22caa为圆心,122aac为半径的圆;当1a时,P点的轨迹是y轴. 2、已知两定点)0,2(A,

31、)0, 1(B,如果动点P满足PBPA2,则点P的轨迹所包围的面积等于解:设点P的坐标是),(yx.由PBPA2,得2222) 1(2)2(yxyx,化简得4)2(22yx,点P的轨迹是以(2,0)为圆心, 2 为半径的圆,所求面积为4. 4、已知定点)0 ,3(B,点A在圆122yx上运动,M是线段AB上的一点,且MBAM31,问点M的轨迹是什么?解:设),(),(11yxAyxM.MBAM31,),3(31),(11yxyyxx,yyyxxx31)3(3111, yyxx3413411. 点A在 圆122yx上 运 动 , 12121yx, 1)34() 134(22yx,即169)43(

32、22yx,点M的轨迹方程是169)43(22yx. 例 5、已知定点)0, 3(B,点A在圆122yx上运动,AOB的平分线交AB于点M,则点M的轨迹方程是. 解:设),(),(11yxAyxM.OM是AOB的平分线,31OBOAMBAM, MBAM31.由变式 1 可得点M的轨迹方程是169)43(22yx. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 12 页 - - - - - - - - - 11练习巩固:已知直线1kxy与圆422yx相交于A、B两点,以O

33、A、OB为邻边作平行四边形OAPB,求点P的轨迹方程 . 解:设),(yxP,AB的中点为M.OAPB是平行四边形,M是OP的中点,点M的坐标为)2,2(yx,且ABOM.直线1kxy经过定点) 1 ,0(C,CMOM,0) 12(2)2() 12,2()2,2(2yyxyxyxCMOM, 化 简 得1)1(22yx. 点P的 轨 迹 方 程 是1)1(22yx.类型九:圆的综合应用例 25、 已知圆0622myxyx与直线032yx相交于P、Q两点,O为原点,且OQOP,求实数m的值分析: 设P、Q两点的坐标为),(11yx、),(22yx,则由1OQOPkk,可得02121yyxx,再利用

34、一元二次方程根与系数的关系求解或因为通过原点的直线的斜率为xy,由直线l与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出OQOPkk的值,从而使问题得以解决解法一: 设点P、Q的坐标为),(11yx、),(22yx一方面,由OQOP,得1OQOPkk,即12211xyxy,也即:02121yyxx另 一 方 面 ,),(11yx、),(22yx是 方 程 组0603222myxyxyx的 实 数 解 , 即1x、2x是 方 程02741052mxx的两个根221xx,527421mxx又P、Q在直线032yx上,)(3941)3(21)3(2121212121xxxxxxyy将代

35、入,得51221myy将、代入,解得3m,代入方程,检验0成立,3m解法二: 由直线方程可得yx23,代入圆的方程0622myxyx,有0)2(9)6)(2(31222yxmyxyxyx,整理,得0)274()3(4)12(22ymxymxm由于0 x,故可得012)3(4)(274(2mxymxymOPk,OQk是上述方程两根故1OQOPkk得127412mm,解得3m经检验可知3m为所求名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 12 页 - - - - - -

36、 - - - 12例 26、已知对于圆1)1(22yx上任一点),(yxP,不等式0myx恒成立,求实数m的取值范围分析一: 为了使不等式0myx恒成立,即使myx恒成立,只须使myxmin)(就行了因此只要求出yx的最小值,m的范围就可求得解法一: 令yxu,由1)1(22yxuyx得:0)1(2222uyuy0且228) 1(4uu,0)12(42uu 即0)122uu, 2121u, 21m i nu, 即21)(m i nyx又0myx恒成立即myx恒成立myx21)(min成立,12m例 27 有一种大型商品,A、B两地都有出售,且价格相同某地居民从两地之一购得商品后运回的费用是:每

37、单位距离A地的运费是B地的运费的3 倍已知A、B两地距离为10 公里,顾客选择A地或B地购买这种商品的标准是:包括运费和价格的总费用较低求A、B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点分析: 该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用解题时要明确题意,掌握建立数学模型的方法解: 以A、B所确定的直线为x轴,AB的中点O为坐标原点,建立如图所示的平面直角坐标系10AB,)0,5(A,)0,5(B设某地P的坐标为),(yx,且P地居民选择A地购

38、买商品便宜,并设A地的运费为a3元/公里,B地的运费为a元/公里因为P地居民购货总费用满足条件:价格A地运费价格B地的运费即:2222) 5()5(3yxayxa0a,2222)5()5(3yxyx化简整理得:222)415()425(yx以点)0,425(为圆心415为半径的圆是两地购货的分界线圆内的居民从A地购货便宜, 圆外的居民从B地购货便宜, 圆上的居民从A、B两地购货的总费用相等因此可随意从A、B两地之一购货名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 12 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁