《表面积与体积--球体》.ppt

上传人:仙*** 文档编号:27182640 上传时间:2022-07-23 格式:PPT 页数:24 大小:2.77MB
返回 下载 相关 举报
《表面积与体积--球体》.ppt_第1页
第1页 / 共24页
《表面积与体积--球体》.ppt_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《《表面积与体积--球体》.ppt》由会员分享,可在线阅读,更多相关《《表面积与体积--球体》.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 割割 圆圆 术术 早在公元三世纪,我国数学家刘徽为推早在公元三世纪,我国数学家刘徽为推导圆的面积公式而发明了导圆的面积公式而发明了“倍边法割圆术倍边法割圆术”。他用加倍的方式不断增加圆内接正多边形的他用加倍的方式不断增加圆内接正多边形的边数,使其面积与圆的面积之差更小,即所边数,使其面积与圆的面积之差更小,即所谓谓“割之弥细,所失弥小割之弥细,所失弥小”。这样重复下去,。这样重复下去,就达到了就达到了“割之又割,以至于不可再割,则割之又割,以至于不可再割,则与圆合体而无所失矣与圆合体而无所失矣”。这是世界上最早的。这是世界上最早的“极限极限”思想。思想。球面:半圆以它的直径为旋转轴,旋转所成

2、的曲面。球面:半圆以它的直径为旋转轴,旋转所成的曲面。球球( (即球体即球体):):球面所围成的几何体。球面所围成的几何体。它包括它包括球面球面和和球面所包围的空间球面所包围的空间。半径是半径是R R的球的体积:的球的体积:推导方法推导方法:334RV 分割分割求近似和求近似和化为准确和化为准确和复习回顾复习回顾球的概念球的概念球心球心球的半径球的半径球的直径球的直径球面被经过球心的平面截得的圆叫做球面被经过球心的平面截得的圆叫做大圆大圆不过球心的截面截得的圆叫做球的不过球心的截面截得的圆叫做球的小圆小圆球的体积公式的推导球的体积公式的推导球的体积公式及应用球的体积公式及应用球的表面积公式及应

3、用球的表面积公式及应用球的表面积公式的推导球的表面积公式的推导l教学重点l教学难点化为准确和思想方法化为准确和思想方法求近似和求近似和分割分割重点难点重点难点球面被经过球心的平面截得的圆叫做球面被经过球心的平面截得的圆叫做大圆大圆不过球心的截面截得的圆叫做球的不过球心的截面截得的圆叫做球的小圆小圆当所分份数不断增加时,精确程度就越来越高;当当所分份数不断增加时,精确程度就越来越高;当份数无穷大时,就得到了圆的面积公式份数无穷大时,就得到了圆的面积公式法法导导出出球球的的体体积积公公式式下下面面我我们们就就运运用用上上述述方方即先把半球分割成即先把半球分割成n部分,再求出每一部分的近似体积,部分

4、,再求出每一部分的近似体积,并将这些近似值相加,得出半球的近似体积,最后考虑并将这些近似值相加,得出半球的近似体积,最后考虑n变变为无穷大的情形,由半球的近似体积推出准确体积为无穷大的情形,由半球的近似体积推出准确体积球的体积球的体积分割分割求近似和求近似和化为准确和化为准确和,21RRr ,)(222nRRr ,)2(223nRRr AOB2C2球的体积球的体积AOOR)1( inR半半径径:层层“小小圆圆片片”下下底底面面的的第第i.,2,1,)1(22niinRRri irOA球的体积球的体积nininRnRrVii,2,1,)1(1232 niinRRri,2,1,)1(22 nVVV

5、V 21半球半球)1(2122223nnnnR 6) 12() 1(123 nnnnnnR 6)12)(1(1123 nnnR 球的体积球的体积6)12)(11(13nnRV 半半球球.01, nn时时当当.343233RVRV 从从而而半半球球334RVR 的的球球的的体体积积为为:定定理理:半半径径是是球的体积球的体积2)2)若每小块表面看作一个平面若每小块表面看作一个平面, ,将每小块平面作为底面将每小块平面作为底面, ,球心作为球心作为顶点便得到顶点便得到n n个棱锥个棱锥, ,这些棱锥体积之和近似为球的体积这些棱锥体积之和近似为球的体积. .当当n n越大越大, ,越接近于球的体积越

6、接近于球的体积, ,当当n n趋近于无穷大时就精确到等于球的体积趋近于无穷大时就精确到等于球的体积. .1) 1)球的表面是曲面球的表面是曲面, ,不是平面不是平面, ,但如果将表面平均分割成但如果将表面平均分割成n n个小块个小块, ,每小块表面可近似看作一个平面每小块表面可近似看作一个平面, ,这这n n小块平面面积之和可近似小块平面面积之和可近似看作球的表面积看作球的表面积. .当当n n趋近于无穷大时趋近于无穷大时, ,这这n n小块平面面积之和接小块平面面积之和接近于甚至等于球的表面积近于甚至等于球的表面积. . 球面不能展开成平面图形,所以求球的表面积无法用展开图球面不能展开成平面

7、图形,所以求球的表面积无法用展开图求出,如何求球的表面积公式呢求出,如何求球的表面积公式呢? ?回忆球的体积公式的推导方法回忆球的体积公式的推导方法, ,是否也可借助于这种是否也可借助于这种极限极限思想方法来推导球的表面积公式呢思想方法来推导球的表面积公式呢? ? 下面,我们再次运用这种方法来推导球的表面积公式下面,我们再次运用这种方法来推导球的表面积公式球的表面积球的表面积oiS o球的表面积球的表面积第第一一步:步:分分割割球面被分割成球面被分割成n n个网格,表面积分别为:个网格,表面积分别为:nSSSS ,321,则球的表面积:则球的表面积:nSSSSS 321则球的体积为:则球的体积

8、为:iV 设“小锥体”的体积为设“小锥体”的体积为iVnVVVVV 321iSO OO O球的表面积球的表面积第第二二步:步:求求近近似似和和ih由第一步得:由第一步得:nVVVVV 321nnhShShShSV 31313131332211 iiihSV 31 O OiSiVO O球的表面积球的表面积第第三三步:步:化化为为准准确确和和RSVii31 如果网格分的越细如果网格分的越细, ,则则: “: “小小锥体锥体”就越接近小棱锥就越接近小棱锥RSRSRSRSVni 3131313132 RSSSSSRni31).(3132 334RV 又又球球的的体体积积为为:RiS iVihiSO O

9、iV234,3134RSRSR 从从而而球的表面积球的表面积Rhi的的值值就就趋趋向向于于球球的的半半径径 例例1.1.钢球直径是钢球直径是5cm,5cm,求它的体积求它的体积. .3336125)25(3434cmRV (变式变式1 1)一种空心钢球的质量是一种空心钢球的质量是142g,142g,外径是外径是5cm,5cm,求它求它的内径的内径.( .(钢的密度是钢的密度是7.9g/cm7.9g/cm2 2) )例题讲解例题讲解(变式变式1 1)一种空心钢球的质量是一种空心钢球的质量是142g,142g,外径是外径是5cm,5cm,求它求它的内径的内径.( .(钢的密度是钢的密度是7.9g/

10、cm7.9g/cm2 2) )解解:设空心钢球的内径为设空心钢球的内径为2xcm,则钢球的质量是则钢球的质量是答答:空心钢球的内径约为空心钢球的内径约为4.5cm.14234)25(349.733 x 3.1149.73142)25(33 x由计算器算得由计算器算得:24. 2 x5 . 42 x例题讲解例题讲解例例2.2.如图,正方体如图,正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1的棱长为的棱长为a,a,它的各它的各个顶点都在球个顶点都在球O O的球面上,问球的球面上,问球O O的表面积。的表面积。A AB BC CD DD D1 1C C1 1B B1 1A

11、A1 1O O分析:正方体内接于球,则由球和正方分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。合,则正方体对角线与球的直径相等。22222113423,)2()2(:aRSaRaaRDDBRt 得得中中略略解解:A AB BC CD DD D1 1C C1 1B B1 1A A1 1O O例题讲解例题讲解4.4.若两球体积之比是若两球体积之比是1:21:2,则其表面积之比是,则其表面积之比是_. .练习一练习一2422:134:11.若球的表面积变为原来的若球的表面积变为原来的2倍倍,则半径变为原来的则半

12、径变为原来的_倍倍.2.若球半径变为原来的若球半径变为原来的2倍,则表面积变为原来的倍,则表面积变为原来的_倍倍.3.若两球表面积之比为若两球表面积之比为1:2,则其体积之比是,则其体积之比是_.课堂练习课堂练习7.7.将半径为将半径为1 1和和2 2的两个铅球,熔成一个大铅球,那么的两个铅球,熔成一个大铅球,那么 这个大铅球的表面积是这个大铅球的表面积是_.5.5.长方体的共顶点的三个侧面积分别为长方体的共顶点的三个侧面积分别为 , 则它的外接球的表面积为则它的外接球的表面积为_. .15,5,36.6.若两球表面积之差为若两球表面积之差为4848 , ,它们大圆周长之和为它们大圆周长之和为1212 , , 则两球的直径之差为则两球的直径之差为_. .练习二练习二课堂练习课堂练习 94 3312l了解球的体积、表面积推导的基本思路:了解球的体积、表面积推导的基本思路:分割分割求近似和求近似和化为标准和的方法,是化为标准和的方法,是一种重要的数学思想方法一种重要的数学思想方法极限思想,它极限思想,它是今后要学习的微积分部分是今后要学习的微积分部分“定积分定积分”内内容的一个应用;容的一个应用;l熟练掌握球的体积、表面积公式:熟练掌握球的体积、表面积公式:23434RSRV 课堂小结课堂小结课堂作业课堂作业P28 1、2、3。复习参考题复习参考题A组组B组组

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁