《《实数(1)》优质教学设计.docx》由会员分享,可在线阅读,更多相关《《实数(1)》优质教学设计.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、实数(1)优质教学设计 6.3.1实数 第一课时 知识与技能: 了解无理数和实数的概念以及实数的分类; 知道实数与数轴上的点具有一一对应的关系。 过程与方法: 在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。 情感态度与价值观: 通过了解数系扩充体会数系扩充对人类发展的作用; 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。 教学重点: 了解无理数和实数的概念; 对实数进行分类。 教学难点:对无理数的认识。 一、复习引入无理数: 利用计算器把下列有理数9 5,1
2、19,847,53,3-写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式 即:5.09 5,18.0119,875.5847,6.053,0.33 =-=-= 归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数。 通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。 比如33,5,2-等都是无理数。14159265.3=也是无理数。 二、实数及其分类: 1、实数的概念:有理数和无理数统称为实数。 2、实数的分类: 按照定义分类如下:
3、实数?数)无理数(无限不循环小 小数)(有限小数或无限循环分数 整数有理数 按照正负分类如下: 实数? ?负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系: 我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗? 活动1:直径为1个单位长度的圆其周长为,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是,由此我们把无理数用数轴上的点表示了出来。 活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交
4、点就是2-。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。 归纳:实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示; 反过来,数轴上的每一个点都表示一个实数。 对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实 O A C B 数大。 三、应用: 例1、下列实数中,无理数有哪些? 2,17 2,37.0 -,14.3,35,0,?11121211211121.10,2)4(-。 解:无理数有:2,35, 注:带根号的数不一定是无理数,比如2)4(-,它其实是有理数4; 无限小数不一定是无理数,无限不循环小数一定是无理数。
5、 比如?11121211211121.10。 例2、把无理数5在数轴上表示出来。 分析:类比2的表示方法,我们需要构造出长度为5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5。 解:如图所示,,1,2=AB OA 由勾股定理可知:5=OB ,以原点O 为圆心,以OB 长度为半径画弧, 与数轴的正半轴交于点C ,则点C 就表示5。 四、随堂练习: 1、判断下列说法是否正确: 无限小数都是无理数; 无理数都是无限小数; 带根号的数都是无理数; 所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数; 所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。 有理数集合 无理数集合 2、把下列各数分别填在相应的集合里: ,722 1415926.3,7,8-,32,6.0,0,36,3 ,?313113111.0。 3、比较下列各组实数的大小: (1)4,15 (2),1416.3 (3)23,23- - (4)3 3,22 五、课堂小结 1、无理数、实数的意义及实数的分类. 2、实数与数轴的对应关系 . 六、布置作业 P57习题6.3第1、2、3题; 教学反思: 关于无理数的认识是非常抽象的,只要求学生了解无理数和实数的意义即可,学生对实数的认识是逐步加深的,以后还要讨论,所以本节课不易过难,教师要把握好难度。