《2019届高三数学课标一轮复习考点规范练: 16同角三角函数的基本关系及诱导公式 .docx》由会员分享,可在线阅读,更多相关《2019届高三数学课标一轮复习考点规范练: 16同角三角函数的基本关系及诱导公式 .docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、考点规范练16同角三角函数的基本关系及诱导公式基础巩固组1.(2017山东泰安模拟)sin 600的值为()A.-12B.-32C.12D.322.(2017浙江湖州考试)已知sin2+=-35,2,则tan =()A.34B.-34C.-43D.433.若cos(3-x)-3cosx+2=0,则tan x等于()A.-12B.-2C.12D.134.1+2sin(-3)cos(+3)化简的结果是()A.sin 3-cos 3B.cos 3-sin 3C.(sin 3-cos 3)D.以上都不对5.(2017湖北孝感模拟)已知tan =3,则1+2sincossin2-cos2的值是()A.1
2、2B.2C.-12D.-26.(2017山东菏泽期末)已知cos -sin =12,则sin cos 等于()A.38B.34C.12D.147.sin(-1 071)sin 99+sin(-171)sin(-261)+tan(-1 089)tan(-540)=.8.已知R,sin2+4sin cos +4cos2=52,则tan =.能力提升组9.已知:sin(-1 000);cos(-2 200);tan(-10);sin710cos tan179.其中符号为负的是()A.B.C.D.10.(2017浙江杭州五校联盟高三一诊)已知倾斜角为的直线与直线x-3y+1=0垂直,则23sin2-c
3、os2=()A.103B.-103C.1013D.-101311.(2017浙江温州模拟)已知cos512+=13,且-2,则cos12-等于()A.223B.13C.-13D.-22312.(2017浙江杭州联考)若1sin+1cos=3,则sin cos =()A.-13B.13C.-13或1D.13或-113.(2017陕西西安模拟)已知函数f(x)=asin(x+)+bcos(x+),且f(4)=3,则f(2 017)的值为()A.-1B.1C.3D.-314.(2017四川泸州四诊改编)已知sin3-=14,则cos3+2=.15.(2017浙江温州瑞安七中模拟改编)已知R,sin
4、+2cos =102,则tan2=.16.当0x4时,函数f(x)=cos2xcosxsinx-sin2x的最小值是.17.已知f()=sin(-)cos(2-)tan-+32tan2+sin(-).(1)化简f();(2)若是第三象限角,且cos-32=15,求f()的值.18.(2017广东阳江期末)已知a,bR,a0,函数f(x)=-2(sin x+cos x)+b,g(x)=asin xcos x+a2+1a+2.(1)若x(0,),f(x)=-255+b,求sin x-cos x的值;(2)若不等式f(x)g(x)对任意xR恒成立,求b的取值范围.答案:1.Bsin 600=sin(
5、360+240)=sin 240=sin(180+60)=-sin 60=-32.2.Csin2+=-35,sin2+=cos ,cos =-35,又2,sin =1-cos2=45,tan =sincos=-43.故选C.3.Dcos(3-x)-3cosx+2=0,-cos x+3sin x=0.tan x=13.故选D.4.Asin(-3)=sin 3,cos(+3)=-cos 3,原式=1-2sin3cos3=(sin3-cos3)2=|sin 3-cos 3|.230,cos 30;cos(-2 200)=cos(-40)=cos 400,tan(-10)=tan(3-10)0,tan
6、1790.故选C.10.C直线x-3y+1=0的斜率为13,因此与此直线垂直的直线的斜率k=-3,tan =-3,23sin2-cos2=2(sin2+cos2)3sin2-cos2=2(tan2+1)3tan2-1,把tan =-3代入得,原式=2(-3)2+13(-3)2-1=1013.故选C.11.D因为512+12-=2,所以cos12-=sin2-12-=sin512+.因为-2,所以-712+5120,所以-2+512-12,所以sin512+=-1-cos2512+=-1-132=-223.12.A由1sin+1cos=3,可得sin +cos=3sin cos ,两边平方,得1
7、+2sin cos =3sin2cos2,解得sin cos =-13或sin cos =1.由题意,知-1sin 1,-1cos 1,且sin 0,cos 0,所以sin cos 1,故选A.13.Df(4)=asin(4+)+bcos(4+)=asin +bcos =3,f(2 017)=asin(2 017+)+bcos(2 017+)=asin(+)+bcos(+)=-asin -bcos =-3.14.-78由题意:sin3-=sin2-6+=cos6+=14,则cos3+2=cos26+=2cos 26+-1=-78.15.-34由sin +2cos =102,得sin =102-
8、2cos .把式代入sin2+cos2=1中可解出cos =1010或cos =31010,当cos =1010时,sin =31010;当cos =31010时,sin =-1010.tan =3或tan =-13.tan 2=-34.16.4当0x4时,0tan x1,f(x)=cos2xcosxsinx-sin2x=1tanx-tan2x,设t=tan x,则0t1,y=1t-t2=1t(1-t)4,当且仅当t=1-t,即t=12时等号成立.17.解 (1)f()=sincostan-+32-2tan2+sin=sincos-tan2+tan2+sin=-cos .(2)cos-32=-
9、sin =15,sin =-15,又是第三象限角,cos =-1-sin2=-265,故f()=265.18.解 (1)依题意得sin x+cos x=105,sin 2x+cos 2x+2sin xcos x=25,即2sin xcos x=-35.1-2sin xcos x=85,即sin 2x+cos 2x-2sin xcos x=(sin x-cos x)2=85.由2sin xcos x=-350,cos x0,sin x-cos x=2105.(2)f(x)g(x)即不等式basin xcos x+2(sin x+cos x)+a2+1a+2对任意xR恒成立,即basinxcosx
10、+2(sinx+cosx)+a2+1a+2min.下面求函数y=asin xcos x+2(sin x+cos x)+a2+1a+2的最小值.令t=sin x+cos x,则t=2sinx+4-2,2且sin xcos x=t2-12.令m(t)=y=asin xcos x+2(sin x+cos x)+a2+1a+2=a(t2-1)2+2t+a2+1a+2=a2t2+2t+1a+2=a2t2+22at+1a+2=a2t+2a2+2,(a0)1当-2a-2,即0a1时,m(t)在区间-2,2上单调递增,(m(t)min=m(-2)=a+1a.2当-2-2a0,即a1时,m(t)min=m-2a=2.3当02,即-1a0时,m(t)min=m(-2)=a+1a.ymin=2,a1,a+1a,a1,a0,所以当a1时,b2;当a0或0a1时,ba+1a.