《2022年怎样培养小学生的数学思维能力 .pdf》由会员分享,可在线阅读,更多相关《2022年怎样培养小学生的数学思维能力 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、怎样培养小学生的数学思维能力数学教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展的过程,尤其是思维能力的发展。在小学数学教学过程中,让学生获得知识固然重要,但我个人认为在学生获得数学知识的同时,发展学生的思维能力更重要。数学知识的理解和掌握与思维能力的发展是密不可分的:学生在理解和掌握数学知识的过程中,不断地运用着比较、分析、综合、抽象、概括、判断、推理等各种思维方法和形式;反过来,这些思维活动又促进数学知识的理解和掌握。 因而数学教学就应根据学生年龄特点有意识地培养学生的思维能力。如果让学生死记硬背一些数学结论,套用数学公式不仅不能促进学生思维能力的发展,而且会导致对知识不理解,
2、掌握不牢固。1利用教材培养学生思维能力培养学生思维能力是贯穿在小学阶段各个年级的数学教学中的。各年级都担负着培养学生思维能力的任务。从一年级一开始我们就要有意识地加以培养。例如,认识大小、长短、多少的教学,就要培养学生比较能力;教学数的组成就要培养学生分析、综合能力;教学10 以内的数和加、减计算,就能培养学生抽象、概括能力等。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10 以内数的概念,理解加、减法的含义,学会10 以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、 减法得数的道路上去。而在
3、一年级养成了死记硬背的习惯,也许在低年级还能打高分,但数学素质并没有提高,思维能力没有增强, 在以后的学习过程中会很困难。同时, 培养思维能力还贯穿在各部分内容的教学中,在教学数学概念、四则运算、解决生活中的问题、几何图形、统计等内容时,都要注意培养学生的思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。 因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方体这个概念时,不要直接画一个长方体,告诉学生这就叫做长方体。而应先让学生观察长方体的各种实物,引导学生找出它
4、们的面、棱和顶点的数量和特点,然后抽象出图形,并对长方体的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断如(5 3) 75( 37) ,先把 5 和 3 加在一起再同7 相加,与先把3 和 7 加在一起再同5 相加,结果相同 。然后引导学生对几个例子进行分精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页析、比较,找出它们的共同点,即等号左边都是先把前两个数相加,再同第三个数相加,而等号右边都是先把后两
5、个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如295713)中去,让学生说出使计算简便的根据,进而学到演绎推理的方法。2利用课堂培养学生思维能力培养学生思维能力要贯穿在每一节课的各个环节中,不论是复习铺垫,教学新知识, 还是巩固练习,拓展运用都要注意结合具体的内容有意识地进行培养。例如复习20 以内的进位加法时, 有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十” 的计算方法,学会类推,而且
6、有效地消除错误。经过这样长期的训练,引导学生简缩思维过程,想一想怎样能很快地算出得数, 就能培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法, 关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中不能把培养思维能力和教学过程割裂开来,把培养思维能力只局限在某一节课内或者一节课的某个环节内,只在一节课最后出一两道稍
7、难的题目来作为训练思维的活动,或者专上一节思维训练课,这是不可取的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。3利用习题培养学生思维能力设计好练习题对于培养学生思维能力起着重要的促进作用,培养思维能力的最有效办法是通过解题的练习来实现。因此设计好习题就成为能否促进学生思维能力发展的重要一环。一般地说, 课本中都安排了一定数量的有助于发展学生思维能力的习题。但是不一定都能满足教学的需要,而且由于班级不同、学生不同, 课本中的习题也很难做到完全适应各种情况的需要。 因此教学时往往要根据具
8、体情况做一些调整或补充。首先, 设计练习题要有针对性, 要根据培养目标来进行设计。例如,学了倒数以后,为了了解学生对倒数这个概念的掌握情况,同时也为了培养学生运用概念进行判断的能力,可以出这样一个判断对错的习题:“假分数的倒数都小于1。 ”要作出正确判断,学生就要分析假分数的倒数里面有没有大于1精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页的和等于1 的。而要弄清这一点,就要明确什么叫做假分数,什么叫做倒数,然后应用这两个概念的定义去分析出有一部分假分数的倒数等于1,这样就可以断定上面的判断是错误的。其次, 在讲解习题时要具有指
9、导性,不能只注重结果。学生说出正确答案要问他是怎么想的,学生说出错误答案要让他明白错在哪里。小学生的数学思维能力方法如何培养小学生的数学思维能力,是一个较复杂的问题。 从理论上看, 思维能力涉及到逻辑学、心理学、教育学等学科的问题。从内容上看,思维能力包括对应用题、 文字题、计算题等各类问题处理的能力。小学生解题思维主要存在的问题有:一是难以养成思维习惯,常常盲目解题;二是任务观点严重,解题不求灵活简洁;三是马虎草率,错误百出。心理学认为:智力的核心是思维能力。从素质教育的观点来看,发展思维、提高智力,是提高素质的重要内容。要提高学生的解题能力, 首先要提高学生的智力, 发展他们的思维。 下面
10、从发展学生的思维角度和学生的解题实际出发,谈谈如何培养小学生的数学思维能力。一、 一例多说,养成解题的思维习惯语言和思维密切相关, 语言是思维的外壳, 也是思维的工具。 语言可以促进思维的发展, 反过来,良好的逻辑思维, 又会引导出准确、 流畅而又周密的语言。在教学实践中,不少老师只强调“怎样解题 ,而忽视了“如何说题(说题意、说思路、说解法、说检验等) 。看似这是重视解题,实则这是忽略解题能力的培养。由于缺少对解题的思维习惯、思维品质的培养,学生的解题能力,只囿于题海战术、死记硬背的机械记忆中,这与当前的素质教育格格不入。另外,从学生解题的实际表现看,学生解题的错误,一般是由于缺乏细致、周密
11、的逻辑思考和分析。 特别是当作业量稍多时, 这种表现更为突出。 从教师教学实际看,教师为了强化对学生解题思路的训练,往往要求学生在作业本上写出分析思路图, 或画出线段图。 但这项工作,对于小学生来说, 一方面难度比较大,另一方面因费时多, 学生持久性不够, 往往收效并不大。 我认为加强课堂教学中的“说题训练 ,即采用“顺逆说 、“转换说 和“辩论说 等几种训练形式,养成学生解题的思维习惯,从而培养小学生的数学思维能力。顺逆说。每解答一道应用题时,不必急于去求答案,而要让学生分别进行顺思考和逆思考,把解题思路及计划说出来。比如解答“三年级种树棵,精选学习资料 - - - - - - - - -
12、名师归纳总结 - - - - - - -第 3 页,共 7 页四年级种树是三年级的倍,四年级比三年级多种几棵? 先让学生用综合法从条件到问题依次说出思路, 再让学生用分析法从问题到条件说出思路。学生顺逆分别说清思路后,再列出算式“ 。如果,学生在说的过程中,语言还不够流畅,思路还不够清晰,还要再让学生看算式“,再进行第二次 “顺逆说 :先让学生说第一步 “ 表示什么?再让学生说第二步“表示什么?最后先说第二步、再说第一步。在解答文字题时,也可进行顺逆说的训练。 如“个比个多多少?列出算式“ 后,让学生根据算式,说出“ 的意义,再把说出的意义与原题对照,看看是否一致?如不一致,则要重新分析,认真
13、检查,直到说出的意义与原题一致为止。转换说。对于题中某一个条件或问题, 要引导学生善于运用转换的思想,说成与其内容等价的另一种表达形式, 使学生加深理解, 从而丰富解题方法, 提高解题能力。如已知“与的比是 ,可引导学生联想说出: ()与的比是;()是的;()是的;()比少;()比多; ()是份,是份,一共是份,等等。这样,学生解题思路就会开阔,方法就会灵活多样,从而化难为易。辩论说。鼓励学生有理有据的自由争辩, 有利于培养学生独立思考和勇于发表不同见解的思维品质, 寻找到独特的解题方法。 有一次,一位老师教学解答圆面积一题时,老师问学生:“计算圆面积要知道什么条件才能进行计算? 多数学生回答
14、“必须知道半径,才能求出圆面积。 但有一个学生举手表示不同意,认为“知道周长或直径,同样可以计算圆面积。对这个学生的回答,老师一方面作了肯定,另一方面要他和持不同意见的同学进行辩论。这样,双方经过几轮辩论后,使这位学生认识到“已知周长或直径,最终还是要先求出半径的道理。另外,也使大部分同学明白了“不光只有知道半径,才能计算圆面积的道理。二、多向探索,培养解题的灵活性求异思维是一种创造性思维。 它要求学生凭借自己的知识水平能力,对某一问题从不同的角度, 不同的方位去思考, 创造性地解决问题。 而小学生的思维是以具体形象思维为主, 容易产生消极的思维定势, 造成一些机械思维模式, 干扰精选学习资料
15、 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 7 页解题的准确性和灵活性。 有的学生常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了粒,小圆吃了粒,剩下的谁多? 由于受数值大小这一表象的干扰,学生的思维定势集中在“上,容易误判断为 “小圆剩下的多 。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问 、“一题多解 和“一题多变 。一题多问。同一道题,同样的条件,从不同的角度出发,可以提出不同
16、的问题。如解答“五一班有学生人。女生占,女生有多少人? 这本来是一道很简单的题目。教学中,老师往往会因学生很容易解答,而一晃而过,忽视发散思维的训练。对于这样的题型,老师要执意求新,变换提出新的问题。如再提出如下问题: ()男生有多少人?()全班有多少人?()男生比女生多多少人? ()男生是女生的几倍? ()女生是男生的几分之几?等等。这样,可以起到“以一当十 的教学效果。像同一道题,老师还可以从分析上多提问,从解法上多提问,从检验上多提问,进行多问启思训练,培养学习思维的灵活性。一题多解。在解题时,要经常注意引导学生从不同的方面,探求解题途径, 以求最佳解法。例如“某村计划修一条长150米的
17、路,前 3 天完成了计划的 1/5 ,照这样计算,完成这条路还需多少天? 首先老师要学生用多种方法解。在学生没有学习工程问题时,解法一般集中在以下三种上:(150-1501/5 )( 1501/53)12(天); 150(1501/5 3)312(天); 150(1-1/5 )(1501/5 3)12(天)。针对这些解法, 老师要善于引导学生比较三种方法的异同点,总结出“三种方法中都运用了全程150 米 这一条件的共性。针对这一共性,老师可打破思维定势,启迪学生的新思维: “假如把 150 米当作一条路(用 1 来表示),还可以怎样解答? 这一点拨,学生很容易发现如下解法:3( 1/5 )1/
18、5 12(天);( 1/5 3)312(天); 31/5 312(天)。综上六种解法,显然后三种解法(尤其是解法),列式简洁,想象丰富,充分可以显示学生思维的灵活性。、精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 7 页3、一题多变。小学生解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如: “某商厦共有层, 每两层间的板梯长米, 从楼到楼共要走多少米? 往往由于“每两层米 和“层 与学生的解题动机发生共鸣,忽视了“层只有段间距 这一特点,而容易得出“ 的错解。要消除类似的干扰,就必须进行一些一题多变的训练。针对解题模式的
19、干扰进行变题训练。如学生学习了工程问题后, 求合做工作时间,容易形成这样一种解题模式“()。我们可将条件中的时间改变成分数形式。如“一项工作,甲独做小时完成,乙独做小时完成,如两人合做要多少小时完成? 如老师不提醒,学生绝大多数会把“小时 和“小时 当作工效,仍然列出算式“() 来解答(实践统计,第次这样的错误率在以上)。又如学生学过等分除法应用题后,往往见“分成几份 就“用除法计算 。在学生掌握等份除法计算方法后,也要注意变题训练。如设计类似题“粒水果糖分成份,最少的份是多少粒? 可淡化消极的“ 思维定势的干扰。因为“ 计算错了,其实最少的份是粒(题中并没有要求平均分)。通常,教学中的变条件
20、、变问题、条件和问题的互换等,都是一题多变的好形式,但是,变题训练要掌握一个原则,就是要在学生较牢固的掌握法则、公式的基础上,进行变题形练。否则,将淡化思维定势的积极作用,不利于学生牢固地掌握知识。三、联系对比,提高解题的准确率为了减少学生的解题错误, 提高解题的准确率, 除加强估算和检验外, 通常较有效的办法是要善于联系对比,让学生在比较中认识、 在比较中区别、 在比较中理解、在比较中提高。常用的联系比较方法有:联系生活实际对比。对于一些农业生产上的株距、行距,工业上的产值、工效,商业上的成本、利润等,学生缺乏生活经验,难以产生共鸣;对于一些较大数字的四则运算,学生解答毅力不强,容易产生畏难
21、情绪。加之,有些教师讲到应用题,便说应用题怎样重要,如何难学,上课要认真呀说到计算题,又说怎样容易出错,计算时要怎样细心,否则看似老师提醒学生重视,实则给学生增加了心理压力,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 7 页背上了思想包袱。 其实,只要把数学题与学生的生活实际联系起来进行对比,解题并不是一件很难的事情。对于难理解的题,要增添一些与之数量关系相同,能贴近学生生活的实例,先解熟悉的题,再解生疏的题。如要解答:“某专业户要种一块300 平方米的果树,行距米、棵距米,种完这块地要多少棵树苗? 可首先补充另一题: “在一块 3
22、00 平方米的操场上站队做操, 每两排纵队之间相距米, 前后两人之间相距米,按这样站队,站满这个操场一共要多少人? 因两题思路相通,解法相同,先解贴近学生生活的补充题,再解原题,迁移自然,默化易成。联系正误对比。有比较才有鉴别,学生解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案 (或算式)和错误答案 (或算式)的对比如正误分析对比、正误解法对比等, 都有利于加强学生辩证思维训练,有利于提高解题能力。 通常的选择题就是很好的训练形式。联系题型对比。在小学数学题型中,归纳起来,不外乎是概念题、计算题、文字题、应用题和图式题等几大类。像计算式题、文字题、应用题、图式题大都是实际生活中的例子,只是用四种不同的描述形式表达而已。比如“个苹果吃了个,还有几个? 除用这种“应用题 的形式描述外,还可以用最简单的算式“?来描述,也可以用一句话“减的差是多少? 或一幅线段图(或实物图)来描述。根据这种知识内在的联系特点,在教学中,要善于把各种描述的形式,联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。培养小学生的数学思维能力的途径和方法很多,但无论哪种途径和方法,最根本的、相通的是离不开思维的训练。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页