十九章四边形9.ppt

上传人:仙*** 文档编号:24879103 上传时间:2022-07-08 格式:PPT 页数:19 大小:427.01KB
返回 下载 相关 举报
十九章四边形9.ppt_第1页
第1页 / 共19页
十九章四边形9.ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《十九章四边形9.ppt》由会员分享,可在线阅读,更多相关《十九章四边形9.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 梯形的性质上面的几幅图中有你熟悉的图形吗上面的几幅图中有你熟悉的图形吗?八年级八年级 数学数学第十九章第十九章 四边形四边形四边形再认识四边形再认识梯形定义梯形定义 一组对边一组对边平行平行而另一组对边而另一组对边不平行不平行的四边的四边形叫做梯形形叫做梯形.上底上底下底下底腰腰腰腰高高夹夹在两底之间的在两底之间的垂线段垂线段叫做梯形的叫做梯形的高高。如图如图,平行的两边平行的两边叫做梯形的叫做梯形的底底,其中较短的底叫其中较短的底叫做做上底上底,较长的底叫做较长的底叫做下底下底.不平行的两边不平行的两边叫做叫做腰腰。第十九章第十九章 四边形四边形 如图如图1,两条腰相等的梯形叫做两条腰相等

2、的梯形叫做等腰梯形等腰梯形.特殊的梯形特殊的梯形:如图如图2,一条腰和底垂直的梯形叫做一条腰和底垂直的梯形叫做直角梯形直角梯形.图图1ABCD图图2ABCD八年级八年级 数学数学第十九章第十九章 四边形四边形做一做做一做 在一张有平行线的纸上作一个等腰梯形在一张有平行线的纸上作一个等腰梯形,连接两条对角线连接两条对角线,仔细的观察图形仔细的观察图形,这个图形是这个图形是轴对称图形吗轴对称图形吗?设法验证你的猜想设法验证你的猜想.图中有哪些相等的线段图中有哪些相等的线段?有有哪些相等的角哪些相等的角?演示八年级八年级 数学数学第十九章第十九章 四边形四边形ODCBA1、等腰梯形的性质、等腰梯形的

3、性质1:等腰梯形在同一底上的两个内角相等等腰梯形在同一底上的两个内角相等DCBA图图5已知:如图已知:如图5,在梯形,在梯形ABCD中,中,ADBC,AB=DC。求证:求证:B=C 。证明:过点证明:过点D作作DEAB,交,交BC于点于点E,得到得到DEC。E ADBC,DEAB AB=DE AB=DC DE=DC DEC=C DEAB DEC=B B=C 研究梯形时,研究梯形时,常常需要添加适当常常需要添加适当的辅助线,把梯形的辅助线,把梯形转化成平行四边形转化成平行四边形和三角形,此处是和三角形,此处是移动一腰移动一腰,即从梯,即从梯形的一个顶点作一形的一个顶点作一腰的平行线。腰的平行线。

4、四边形四边形ABED是平行四边形是平行四边形等腰梯形的性质等腰梯形的性质1:等腰梯形在同一底上的两个内角相等等腰梯形在同一底上的两个内角相等。已知:如图已知:如图6,在梯形,在梯形ABCD中,中,ADBC,AB=DC。求证:求证:B=C 。DCBA图图6证明:过证明:过A、D分别作分别作AEBC,DFBC , 垂垂足分别为足分别为E、F FE 这也是研究梯形这也是研究梯形时常用的辅助线作法,时常用的辅助线作法,即即从同一底的两端作从同一底的两端作另一底的垂线段另一底的垂线段,它,它可把梯形分成一个矩可把梯形分成一个矩形和两个直角三角形形和两个直角三角形(如果是等腰梯形,(如果是等腰梯形,所得到

5、的两个直角三所得到的两个直角三角形全等)。角形全等)。AEDF,AEB= DFC=900 ADBC四边形四边形AEFD是平行四边形是平行四边形AE=DF在在RtABE和和RtDCF中中AEDFABDC= RtABE RtDCF B=C2、等腰梯形的性质、等腰梯形的性质2:等腰梯形的两条对角线相等等腰梯形的两条对角线相等。已知:如图已知:如图8,在梯形,在梯形ABCD中,中, ADBC,AB=DC 。求证:求证:AC=BD ABCD图图8证明:在梯形证明:在梯形ABCD中中 AB=DC, ABC=DCB(等腰梯形在同(等腰梯形在同一底上的两个内角相等)。一底上的两个内角相等)。ABDCABCDC

6、BBCCB 在在ABC和和DCB中中 ABC DCB (SAS) AC=DBE等腰梯形为什么是轴对称图形?等腰梯形为什么是轴对称图形?它的对称轴是什么?它的对称轴是什么?3、等腰梯形的对称性:、等腰梯形的对称性:ABCD图图7 如图如图7, 延长等腰梯形的两腰延长等腰梯形的两腰 相交于点相交于点E,HF由由B=C,ADBC,可知,可知EBC和和EAD都是等腰三角形。都是等腰三角形。因此从点因此从点E作两底的垂线必平分两作两底的垂线必平分两底。根据等腰三角形是轴对称图形,底。根据等腰三角形是轴对称图形,可得可得等腰梯形也是轴对称图形。过等腰梯形也是轴对称图形。过两底中点的直线是它的对称轴。两底中

7、点的直线是它的对称轴。这也是研究梯形常用的这也是研究梯形常用的辅助线作法,即辅助线作法,即延长梯延长梯形的两腰交于一点形的两腰交于一点,得,得到两个三角形(如果是到两个三角形(如果是等腰梯形,则得到两个等腰梯形,则得到两个分别以梯形两底为底的分别以梯形两底为底的等腰三角形)。等腰三角形)。 等腰梯形同一个底上的两个内角相等等腰梯形同一个底上的两个内角相等 等腰梯形的两条对角线等腰梯形的两条对角线相等相等. .书写格式书写格式: 在等腰梯形在等腰梯形ABCD中,中, BAD=ADC,ABC=BCD, AC= =BD ABCD八年级八年级 数学数学等腰梯形等腰梯形的性质的性质第十九章第十九章 四边

8、形四边形二、等腰梯形的性质二、等腰梯形的性质1.一组对边平行,另一组对边相等的四边形是等一组对边平行,另一组对边相等的四边形是等腰梯形腰梯形 ( )3.四边形四边形ABCD中,若中,若A:B:C:D=2:2:1:3, 则四边形的形状是则四边形的形状是 。2. 四边形四边形ABCD中,若中,若A:B:C:D=1:4:3:2, 则四边形的形状是则四边形的形状是 ;梯梯 形形直角梯形直角梯形4.等腰梯形的两底之差等于腰长,则腰与下底的夹角【等腰梯形的两底之差等于腰长,则腰与下底的夹角【 】 A. 60 B. 120 C. 135 D. 150 5.在等腰梯形在等腰梯形ABCD中,中,DCAB,对角线

9、对角线AC平分平分BAD, B=60,CD=2cm,则梯形则梯形ABCD的面积是的面积是 6.直角梯形直角梯形ABCD中,中, ABCD,ADCD,AB=1cm,AD=2cm,CD=4cm,则则BC的长为的长为 ,EFFE在等腰梯形在等腰梯形ABCD中,中,ADBC,AEBC,AD=AE= BC ,求,求DBCAD31例如图,在等腰梯形ABCD中,AD=2,BC=4,高DF=2,求腰DC的长。ADBFC解:如图,将腰AB平移到DE的位置,由平移的性质和平行四边形的判别方法,可知四边形ABED是平行四边形,DE=AB=DC,BE=AD 在等腰DEC中, EC=BC-BE=BC-AD=4-2=2,

10、CF= EC=1,DC=5122222CFDFE E21BACDE 在梯形在梯形ABCD中,中,ADBC,ACBD, AD= 3,BD=12 ,BC=10求:求:AC的长的长解:过点过点D作作DEAC,交交BC的延长线于的延长线于E, ADBC四边形四边形ACED是平行四是平行四边形边形CE=AD=3, BDE= BOC=90在在RtBDE中,由勾股定中,由勾股定理可得:理可得:DE=512)310(22如图,在梯形如图,在梯形ABCD中,中,AD BC,AB=BC+AD,H是是CD中点,试说明:中点,试说明:BHAHADBCHE证明:延长证明:延长AH交交BC的延长线的延长线于于E,易证易证

11、ADH ECH, CE=AD,AH=EHAB=BC+ADBE=BC+CE=BC+AD=ABAH=EH BHAH常用技巧1.延长两腰交于一点延长两腰交于一点 作用:使梯形问题转化为三角形问题,作用:使梯形问题转化为三角形问题, 若是等腰梯形则得到等腰三角形。若是等腰梯形则得到等腰三角形。A B D C E 2.平移一腰平移一腰 作用:使梯形问题转化为平行四边形作用:使梯形问题转化为平行四边形 及三角形问题。及三角形问题。 CE等于上、下底的差等于上、下底的差A B D C E 3.作高作高 作用:使梯形问题转化为直角三角形作用:使梯形问题转化为直角三角形 及矩形问题。及矩形问题。 A B D C E F 5. 当有一腰中点时,连结一个顶当有一腰中点时,连结一个顶点与一腰中点并延长与一个底点与一腰中点并延长与一个底的延长线相交。的延长线相交。 作用:可得作用:可得ADE FCE, BF等于上、下底的和等于上、下底的和.CBFEDA4.平移一条对角线平移一条对角线 作用:得到平行四边形作用:得到平行四边形ACED,使使CE=AD,BE等于上、下底等于上、下底的和的和.A B C D E 常用技巧CBFEDAG6. 当有一腰中点时,过中点作另当有一腰中点时,过中点作另一腰的平行线。一腰的平行线。 作用:可得到平行四边形和全等作用:可得到平行四边形和全等三角形三角形.练习1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁