近世代数期末考试试卷及答案(正).doc

上传人:豆**** 文档编号:24135721 上传时间:2022-07-03 格式:DOC 页数:6 大小:442.50KB
返回 下载 相关 举报
近世代数期末考试试卷及答案(正).doc_第1页
第1页 / 共6页
近世代数期末考试试卷及答案(正).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《近世代数期末考试试卷及答案(正).doc》由会员分享,可在线阅读,更多相关《近世代数期末考试试卷及答案(正).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流近世代数期末考试试卷及答案(正).精品文档.近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、设G 有6个元素的循环群,a是生成元,则G的子集(C )是子群。A、 B、 C、 D、2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( )A、a*b=a-bB、a

2、*b=maxa,b C、 a*b=a+2b D、a*b=|a-b|4、设、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=( )A、 B、 C、 D、5、任意一个具有2个或以上元的半群,它( )。A、不可能是群B、不一定是群C、一定是群 D、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、凯莱定理说:任一个子群都同一个-变换群-同构。2、一个有单位元的无零因子的-交换环-称为整环。3、已知群中的元素的阶等于50,则的阶等于-25-。4、a的阶若是一个有限整数n,那么G与-模n乘余类加群-同构。

3、5、A=1.2.3 B=2.5.6 那么AB=-2-。6、若映射既是单射又是满射,则称为-一一映射-。7、叫做域的一个代数元,如果存在的-不都等于零的元-使得。8、是代数系统的元素,对任何均成立,则称为-右单位元-。9、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、-消去律成立-。10、一个环R对于加法来作成一个循环群,则P是-交换环-。三、解答题(本大题共3小题,每小题10分,共30分)1、设集合A=1,2,3G是A上的置换群,H是G的子群,H=I,(1 2),写出H的所有陪集。解:H的3个右陪集为:I,(1 2),(1 2 3 ),(1 3),(1

4、 3 2 ),(2 3 )H的3个左陪集为:I,(1 2) ,(1 2 3 ),(2 3),(1 3 2 ),(1 3 )2、设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么?答:(E,)不是群,因为(E,)中无单位元。3、a=493, b=391, 求(a,b), a,b 和p, q。解 :方法一、辗转相除法。列以下算式:a=b+102b=3102+85102=185+17 由此得到 (a,b)=17, a,b=ab/17=11339。然后回代:17=102-85=102-(b-3102)=4102-b=4(a-b)-b=4a-

5、5b.所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若是群,则对于任意的a、bG,必有惟一的xG使得a*xb。证明 :设e是群的幺元。令xa1*b,则a*xa*(a1*b)(a*a1)*be*bb。所以,xa1*b是a*xb的解。若xG也是a*xb的解,则xe*x(a1*a)*xa1*(a*x)a1*bx。所以,xa1*b是a*xb的惟一解。2、设m是一个正整数,利用m定义整数集Z上的二元关系:ab当且仅当mab。证明:容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为a=xZ;mxa或者也可记

6、为,称之为模m剩余类。若mab也记为ab(m)。当m=2时,Z2仅含2个元:0与1。近世代数模拟试题二一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、6阶有限群的任何子群一定不是( )。A、2阶B、3 阶 C、4 阶 D、 6 阶2、设G是群,G有( )个元素,则不能肯定G是交换群。A、4个 B、5个 C、6个 D、7个3、有限布尔代数的元素的个数一定等于( )。A、偶数 B、奇数 C、4的倍数 D、2的正整数次幂4、下列哪个偏序集构成有界格( )A、(N,) B、(Z,) C、

7、(2,3,4,6,12,|(整除关系) D、 (P(A),)5、设S3(1),(12),(13),(23),(123),(132),那么,在S3中可以与(123)交换的所有元素有( )A、(1),(123),(132) B、12),(13),(23) C、(1),(123) D、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、群的单位元是-唯一-的,每个元素的逆元素是-唯一-的。2、如果是与间的一一映射,是的一个元,则-。3、区间1,2上的运算的单位元是-2-。4、可换群G中|a|=6,|x|=8,则|ax|=24。5、环

8、Z8的零因子有 -。6、一个子群H的右、左陪集的个数-相等-。7、从同构的观点,每个群只能同构于他/它自己的-商群-。8、无零因子环R中所有非零元的共同的加法阶数称为R的-特征-。9、设群中元素的阶为,如果,那么与存在整除关系为-。三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?解: 在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,等等,可得总共8种。2、S1,S2是A的子环,则S1S2也是子环。S1+S2也是子环吗?证: 由上题子环的

9、充分必要条件,要证对任意a,bS1S2 有a-b, abS1S2:因为S1,S2是A的子环,故a-b, abS1和a-b, abS2 ,因而a-b, abS1S2 ,所以S1S2是子环。S1+S2不一定是子环。在矩阵环中很容易找到反例:3、设有置换,。1求和;2确定置换和的奇偶性。解: 1,;2两个都是偶置换。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、一个除环R只有两个理想就是零理想和单位理想。证明:假定是R的一个理想而不是零理想,那么a,由理想的定义,因而R的任意元这就是说=R,证毕。2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。证: 必要性:将b代入即可得。充分性:利用结合律作以下运算:ab=ab(ab2a)=(aba)b2a=ab2a=e,ba=(ab2a)ba=ab2 (aba)=ab2a=e,所以b=a-1。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁