2022年材料力学公式汇总完全版 .pdf

上传人:Q****o 文档编号:24105266 上传时间:2022-07-03 格式:PDF 页数:10 大小:361.90KB
返回 下载 相关 举报
2022年材料力学公式汇总完全版 .pdf_第1页
第1页 / 共10页
2022年材料力学公式汇总完全版 .pdf_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2022年材料力学公式汇总完全版 .pdf》由会员分享,可在线阅读,更多相关《2022年材料力学公式汇总完全版 .pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习必备欢迎下载1 截面几何参数序号公式名称公式符号说明(1.1)截面形心位置AzdAzAc,AydAyAcZ 为水平方向Y 为竖直方向(1.2)截面形心位置iiicAAzz,iiicAAyy(1.3)面积矩AZydAS,AyzdAS(1.4)面积矩iizyAS,iiyzAS(1.5)截面形心位置ASzyc,ASyzc(1.6)面积矩cyAzS,czAyS(1.7)轴惯性矩dAyIAz2,dAzIAy2(1.8)极惯必矩dAIA2(1.9)极惯必矩yzIII(1.10)惯性积dAzyIAzy(1.11)轴惯性矩AiIzz2,AiIyy2(1.12)惯性半径(回转半径)AIizz,AIiyy(1

2、.13)面积矩轴惯性矩极惯性矩惯性积zizSSyiySSzizIIyiyIIiII,zyizyII(1.14)平行移轴公式AaIIzcz2AbIIycy2abAIIzcyczy2 应力与应变(2.1)轴心拉压杆横截面上的应力AN(2.2)危险截面上危险点上的应力ANmax(2.3a)轴心拉压杆的纵向线应变ll精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 10 页学习必备欢迎下载(2.3b)轴心拉压杆的纵向绝对应变llll.1(2.4a)(2.4b)胡克定律EE(2.5)胡克定律EAlNl.(2.6)胡克定律iiiiiEAlNll(2.

3、7)横向线应变bbbbb1(2.8)泊松比(横向变形系数)(2.9)剪力双生互等定理yx(2.10)剪切虎克定理G(2.11)实心圆截面扭转轴横截面上的应力IT(2.12)实心圆截面扭转轴横截面的圆周上的应力ITRmax(2.13)抗扭截面模量(扭转抵抗矩)RIWT(2.14)实心圆截面扭转轴横截面的圆周上的应力TWTmax(2.15)圆截面扭转轴的变形GIlT.(2.16)圆截面扭转轴的变形iiiiGIlT(2.17)单位长度的扭转角l,GIT(2.18)矩形截面扭转轴长边中点上的剪应力3maxbTWTTTW是矩形截面TW的扭转抵抗矩(2.19)矩形截面扭转轴短边中点上的剪应力max1精选学

4、习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 10 页学习必备欢迎下载(2.20)矩形截面扭转轴单位长度的扭转角4bGTGITTTI是矩形截面的TI相当极惯性矩(2.21)矩形截面扭转轴全轴的扭转角4.bGlTl,与截面高宽比bh/有关的参数(2.22)平面弯曲梁上任一点上的线应变y(2.23)平面弯曲梁上任一点上的线应力Ey(2.24)平面弯曲梁的曲率zEIM1(2.25)纯弯曲梁横截面上任一点的正应力zIMy(2.26)离中性轴最远的截面边缘各点上的最大正应力zIyMmaxmax.(2.27)抗弯截面模量(截面对弯曲的抵抗矩)maxyI

5、Wz(2.28)离中性轴最远的截面边缘各点上的最大正应力zWMmax(2.29)横力弯曲梁横截面上的剪应力bIVSzz*zS被切割面积对中性轴的面积矩。(2.30)中性轴各点的剪应力bIVSzz*maxmax(2.31)矩形截面中性轴各点的剪应力bhV23max(2.32)工字形和 T 形截面的面积矩*ciizyAS(2.33)平面弯曲梁的挠曲线近似微分方程)(xMEIvzV 向下为正X 向右为正(2.34)平面弯曲梁的挠曲线上任一截面的转角方程CdxxMEIvEIzz)((2.35)平面弯曲梁的挠曲线上任一点挠度方程DCxdxdxxMvEIz)((2.36)双向弯曲梁的合成弯矩22yzMMM

6、精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 10 页学习必备欢迎下载(2.37a)拉(压)弯组合矩形截面的中性轴在 Z 轴上的截距pyzziza20ppyz ,是集中力作用点的标(2.37b)拉(压)弯组合矩形截面的中性轴在 Y 轴上的截距pzyyiya203 应力状态分析(3.1)单元体上任意截面上的正应力2sin2cos22xyxyx(3.2)单元体上任意截面上的剪应力2cos2sin2xyx(3.3)主平面方位角yxx22tan0(反号与x0)(3.4)大主应力的计算公式22max22xyxyx(3.5)主应力的计算公式22m

7、ax22xyxyx(3.6)单元体中的最大剪应力231max(3.7)主单元体的八面体面上的剪应力23223122131(3.8)面上的线应变2sin22cos22xyyxyx(3.9)面与+o90面之间的角应变2cos2sin)(xyyxxy(3.10)主应变方向公式yxxy02tan(3.11)最大主应变42222maxxyyxyx(3.12)最小主应变42222maxxyyxyx(3.13)xy的替代公式yxxy0452(3.14)主应变方向公式yxyx045022tan精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 10 页学习

8、必备欢迎下载(3.15)最大主应变245245max22200yxyx(3.16)最小主应变245245max22200yxyx(3.17)简单应力状态下的虎克定理Exx,Exy,Exz(3.18)空间应和状态下的虎克定理zyxxE1xzyyE1yxzzE1(3.19)平面应力状态下的虎克定理(应变形式))(1yxxE)(1xyyE)(yxzE(3.20)平面应力状态下的虎克定理(应力形式))(12yxxE)(12xyyE0z(3.21)按主应力、主应变形式写出广义虎克定理32111E13221E21331E(3.22)二向应力状态的广义虎克定理)(1211E)(1122E)(213E(3.2

9、3)二向应力状态的广义虎克定理)(12121E)(12121E)(11222E03(3.24)剪切虎克定理xyxyGyzyzGzxzxG4 内力和内力图(4.1a)(4.1b)外力偶的换算公式nNTke55.9nNTpe02.7(4.2)分布荷载集度剪力、弯矩之间的关系)()(xqdxxdV)(xq向上为正(4.3))()(xVdxxdM(4.4))()(22xqdxxMd5 强度计算(5.1)第一强度理论:最大拉应力理论。当)f)fuut塑性材料脆性材料.(*11时,材料发生脆性断裂破坏。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共

10、 10 页学习必备欢迎下载(5.2)第二强度理论:最大伸长线应变理论。当)f)()fuut塑性材料脆性材料()(*3211321时,材料发生脆性断裂破坏。(5.3)第三强度理论:最大剪应力理论。当)f)fucy脆性材料塑性材料(3131时,材料发生剪切破坏。(5.4)第四强度理论:八面体面剪切理论。当)f)fucy脆性材料塑性材料(21(21232231221232231221时,材料发生剪切破坏。(5.5)第一强度理论相当应力1*1(5.6)第二强度理论相当应力)(321*2(5.7)第三强度理论相当应力31*3(5.8)第四强度理论相当应力232231221*421(5.9a)由强度理论建

11、立的强度条件*(5.9b)(5.9c)(5.9d)由直接试验建立的强度条件maxttmaxccmax(5.10a)(5.10b)轴心拉压杆的强度条件maxttANmaxccAN精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 10 页学习必备欢迎下载(5.11a )(5.11b)(5.11c)(5.11d)由强度理论建立的扭转轴的强度条件max1*1tTWT(适用于脆性材料 ) )(321*2=)1()0(maxmaxmaxt1maxtTWT(适用于脆性材料 ) 2maxmaxmax31*32maxTWT(适用于塑性材料 ) 300212

12、1max2maxmax2max2max232231221*43maxTWT(适用于塑性材料 ) (5.11e )由扭转试验建立的强度条件maxTWT(5.12a)(5.12b)平面弯曲梁的正应力强度条件maxtZtWMmaxcZcWM(5.13)平面弯曲梁的剪应力强度条件*maxmaxbIVSZZ(5.14a)(5.14b)平面弯曲梁的主应力强度条件422*3322*4(5.15a)(5.15a)圆截面弯扭组合变形构件的相当弯矩WMWTMMyZ*322231*3WMWTMMyZ*4222232231221*475.021(5.16)螺栓的抗剪强度条件42dnN(5.17)螺栓的抗挤压强度条件b

13、cbctdN精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 10 页学习必备欢迎下载(5.18)贴角焊缝的剪切强度条件7.0wfwflhN6 刚度校核(6.1)构件的刚度条件.maxll(6.2)扭转轴的刚度条件maxGIT(6.3)平面弯曲梁的刚度条件maxlvlv7 压杆稳定性校核(7.1)两端铰支的、细长压杆的、 临界力的欧拉公式22lEIPcrI 取最小值(7.2)细长压杆在不同支承情况下的临界力公式22).(lEIPcrll.00l计算长度。长度系数;一端固定,一端自由2一端固定,一端铰7.0两端固定:5.0(7.3)压杆的柔

14、度il .AIi是截面的惯性半径(回转半径)(7.4)压杆的临界应力APcrcu22Ecu(7.5)欧拉公式的适用范围PPfE(7.6)抛物线公式当ycfE57.0)(12cycrfAfAPcycrcr.)(1 2yf压杆材料的屈服极限;常数,一般取43.0(7.7)安全系数法校核压杆的稳定公式crwcrPkPP精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 10 页学习必备欢迎下载(7.8)折减系数法校核压杆的稳定性.AP折减系数cr, 小于 1 8 动荷载(8.1)动荷系数jdjdjdjddNNPPKP-荷载 N-内力-应力-位移

15、d-动 j-静(8.2) 构件匀加速上升或下降时的动荷系数gaKd1a-加速度 g-重力加速度(8.3)构件匀加速上升或下降时的动应力jjddgaK)1 (8.4) 动应力强度条件maxmaxjddK杆件在静荷载作用下的容许应力(8.5)构件受竖直方向冲击时的动荷系数jdHK211H-下落距离(8.6)构件受骤加荷载时的动荷系数2011dKH=0 (8.7)构件受竖直方向冲击时的动荷系数jjdgvK211v-冲击时的速度(8.8)疲劳强度条件Kmax-疲劳极限-疲劳应力容许值K-疲劳安全系数9 能量法和简单超静定问题(9.1)外力虚功:IieePMPPW.332211(9.2)内力虚功:lll

16、lTdlNdVddMW(9.3)虚功原理:变形体平衡的充要条件是:0WWe(9.4)虚功方程:变形体平衡的充要条件是:WWe(9.5)莫尔定理:lllldTldNdVdM(9.6)莫尔定理:lllldxGITTdxEANNdxGAVVKdxEIMM(9.7)桁架的莫尔定理:lEANN(9.8)变形能:WU(内力功)(9.9)变形能:eWU(外力功)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 10 页学习必备欢迎下载(9.10)外力功表示的变形能:IiiiPPPPU2121.21212211(9.11)内力功表示的变形能:lllldx

17、GIxTdxEAxNdxGAxKVdxEIxM2)(2)(2)(2)(2222(9.12)卡氏第二定理:iiPU(9.13)卡氏第二定理计算位移公式:llliiiilidxPTGITdxPNEANdxPVGAKVdxPMEIM(9.14)卡氏第二定理计算桁架位移公式:lPNEANii(9.15)卡氏第二定理计算超静定问题:0dxRMEIMBlBy(9.16)莫尔定理计算超静定问题:0dxEIMMlBy(9.17)一次超静定结构的力法方程:01111PX(9.18)1X方向有位移时的力法方程:PX1111(9.19)自由项公式:dxEIMMlPP11(9.20)主系数公式:dxEIMl2111(9.21)桁架的主系数与自由项公式:lEAlN2111lPPEAlNN11精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 10 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁