初三数学二次根式导学案.doc

上传人:豆**** 文档编号:24030583 上传时间:2022-07-03 格式:DOC 页数:33 大小:469.50KB
返回 下载 相关 举报
初三数学二次根式导学案.doc_第1页
第1页 / 共33页
初三数学二次根式导学案.doc_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《初三数学二次根式导学案.doc》由会员分享,可在线阅读,更多相关《初三数学二次根式导学案.doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date初三数学二次根式导学案初三数学二次根式导学案初三数学二次根式导学案一、学习目标1了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题3. 掌握二次根式的性质和,并能灵活应用;二、知识衔接1什么叫平方根、算术平方根?2说出下列各式的意义,并计算: , , , , , , ,观察上面几个式子的特点,总结它们的被平方数都 三、探究新知 , , 这

2、样的式子是我们这节课研究的内容二次根式1、式子 叫做二次根式.温馨提示:同学们应注意(1) 只有在条件 时才叫二次根式,是二次根式吗? 呢? 若根式中含有字母必须保证根号下式子 ,字母范围的限制也是根式的一部分。(2) 是二次根式,而 ,2是二次根式吗?显然,因此二次根式指的是某种式子的“外在形态”请举出几个二次根式的例子,并说明为什么是二次根式2、例题学习例1:a为实数时,下列各式中哪些是二次根式? 例2:X怎样的实数时,式子在实数范围有意义?例3:当字母取何值时,下列各式为二次根式:(1) (2) (3) (4) (5) (6)+ (7) (8)分析:由二次根式的定义,被开方数必须是非负数

3、,把问题转化为解不等式或不等式组完成。四、归纳总结1式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式2式子中,被开方数(式)必须五、跟踪练习:1、下列各式是否是二次根式; ; ; ; ; ; 2、a是怎样的实数时,下列各式在实数范围内有意义?(1) (2)(3)3、已知:,则 。二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。2、掌握二次根式有意义的条件。3、掌握二次根式的基本性质:和二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质难点:综合运用性质和。三、学习过程(一)复习引入:(1)已知x2 = a,那么a是x的_; x是a的_,

4、记为_, a一定是_数。(2)4的算术平方根为2,用式子表示为 =_;正数a的算术平方根为_,0的算术平方根为_;式子的意义是 。(二)提出问题1、式子表示什么意义?2、什么叫做二次根式?3、式子的意义是什么?4、的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,2、计算 : (1) (2) (3) (4)根据计算结果,你能得出结论: ,其中,的意义是 。3、当a为正数时指a的 ,而0的算术平方根是 ,负数 ,只有非负数a才有算术平方根。所以,在二次根式中,字母a必须满足 , 才有意义

5、。(三)合作探究1、学生自学课本例题后,模仿例题的解答过程合作完成练习 : x取何值时,下列各二次根式有意义? 2、(1)若有意义,则a的值为_(2)若在实数范围内有意义,则x为( )。A.正数 B.负数 C.非负数 D.非正数(四)展示反馈 (学生归纳总结)1非负数a的算术平方根(a0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。2式子的取值是非负数。(五)精讲点拨1、二次根式的基本性质()2=a成立的条件是a0,利用这个性质可以求二次根式的平方,如()2=5;也可以把一个非负数写成一个数的平方形式,如5=()

6、2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。(五)拓展延伸1、(1)在式子中,x的取值范围是_.(2)已知+0,则x-y _.(3)已知y+,则= _。 2、由公式,我们可以得到公式a= ,利用此公式可以把任意一个非负数写成一个数的平方的形式。(1)把下列非负数写成一个数的平方的形式:5 0.35(2)在实数范围内因式分解 4a-11(六)达标测试A组(一)填空题:1、 =_;2、 在实数范围内因式分解:(1)x2-9= x2 - ( )2= (x+ _)(x-_)(2) x2 - 3 = x2 - ( ) 2 = (x+ _) (x- _) (二)选择题:1、计算

7、 ( ) A. 169B.-13C13 D.132、已知A. x-3 B. x-3 C.x=-3 D x的值不能确定3、下列计算中,不正确的是 ( )。A. 3= B 0.5= C .=0.3 D =35B组(一)选择题:1、下列各式中,正确的是( )。A. = B C D2、 如果等式= x成立,那么x为( )。A x0; B.x=0 ; C.x0; D.x0(二)填空题:1、 若,则 = 。2、分解因式:X4 - 4X2 + 4= _. 3、当x= 时,代数式有最小值,其最小值是 。二次根式(2)一、学习目标1、掌握二次根式的基本性质:2、能利用上述性质对二次根式进行化简.二、学习重点、难

8、点重点:二次根式的性质难点:综合运用性质进行化简和计算。三、学习过程(一)复习引入:(1)什么是二次根式,它有哪些性质?(2)二次根式有意义,则x 。(3)在实数范围内因式分解:x2-6= x2 - ( )2= (x+ _)(x-_)(二)提出问题1、式子表示什么意义?2、如何用来化简二次根式?3、在化简过程中运用了哪些数学思想?(三)自主学习自学课本第3页的内容,完成下面的题目:1、计算: 观察其结果与根号内幂底数的关系,归纳得到:当 2、计算: 观察其结果与根号内幂底数的关系,归纳得到:当 3、计算: 当 (四)合作交流1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非

9、常重要的性质:2、化简下列各式: 3、请大家思考、讨论二次根式的性质与有什么区别与联系。(五)展示反馈1、化简下列各式(1) (2) 2、化简下列各式(1) (2)(x-2) (六)精讲点拨利用可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a”的取值。(七)拓展延伸(1)a、b、c为三角形的三条边,则_.(2) 把(2-x)的根号外的(2-x)适当变形后移入根号内,得( )A、B、 C、 D、(3) 若二次根式有意义,化简x-4-7-x。(八)达标测试:A组1、填空:(1)、-=_.(2)、= 2、已知2x3,化简: B组1、 已知0 x1,化简:2、 边长为a的正方形桌面,正中间有一个边长为的正方形方孔若沿图中虚线锯开,可以拼成一个新的正方形桌面你会拼吗?试求出新的正方形边长-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁