《九:几何综合题.doc》由会员分享,可在线阅读,更多相关《九:几何综合题.doc(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date九:几何综合题www.1230.org 初中数学资源网中考数学专题复习之十五:几何综合题 【中考题特点】:几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。解这类几何综合题,应该注意以下几点:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想
2、与方法.【范例讲析】:例1:已知:如图,直线PA交O于A、E两点,PA的垂线DC切O于点C,过A点作O的直径AB。(1)求证:AC平分DAB;(2)若DC4,DA2,求O的直径。例2:已知:如图,以RtABC的斜边AB为直 径作O,D是O上的点,且有AC=CD。过点C作O的切线,与BD的延长线交于点E,连结CD。 (1)试判断BE与CE是否互相垂直?请说明理由;(2)若CD=,tanDCE=,求O的半径长。例3:如图矩形ABCD中,过A,B两点的O切CD于E,交BC于F,AHBE于H,连结EF。(1) 求证:CEFBAH(2) 若BC2CE6,求BF的长。例4:如图,AB是O的直径,点C在BA
3、的延长线上,CA=AO,点D在O上,ABD=30求证:CD是O的切线;ABDCEOP若点P在直线AB上,P与O外切于点B,与直线CD相切于点E,设O与P的半径分别为r与R,求的值例5:已知直线L与O相切于点A,直径AB=6,点P在L上移动,连接OP交O于点C,连接BC并延长BC交直线L于点D.(1)若AP=4,求线段PC的长;(2)若PAO与BAD相似,求APO的度数和四边形OADC的面积。(答案要求保留根号)例6:如图1:O的直径为AB,过半径OA的中点G作弦CEAB,在上取一点D,分别作直线CD、ED交直线AB于点F、M。(1)求COA和FDM的度数;(2)求证:FDMCOM;(3)如图2
4、:若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否仍有FDMCOM?证明你的结论。 【练习】:1、如图,已知BC是O的直径,AHBC,垂足为D,点A为的中点,BF交AD于点E,且BEEF=32,AD=6。(1) 求证:AE=BE;(2) 求DE的长;(3) 求BD的长 。 CAPBOD2、已知:如图,BD是O的直径,过圆上一点A作O的切线交DB的延长线于P,过B点作BCPA交O于C,连结AB、AC。(1) 求证:AB=AC;(2) 若PA=10,PB=5,求O的半径和AC的长。3、如图,AB是ABC的外接圆O的直径,D是O上的一点
5、,DEAB于点E,且DE的延长线分别交AC、O、BC的延长线于F、M、G. (1)求证:AEBEEFEG; (2)连结BD,若BDBC,且EFMF2,求AE和MG的长.参考答案:例1:解:1(1)证法一:连结BCAB为O的直径ACB90又DC切O于C点DCABDCPERtADCRtACBDACCAB(2)解法一:在RtADC中,AD2,DC4AC2由(1)得RtADCRtACB即AB10O的直径为10(1)证法二:连结OCOAOCACOCAO又CD切O于C点OCDCCDPAOCPAACODACDACCAO(2)解法二:过点O作OMAE于点M,连结OCDC切O于C点OCDC又DCPA四边形OCD
6、M为矩形OMDC4又DC2DADEDE8,AE6, AM3在RtAMO中,OA5即O的直径为10。例2:例3:ABDCEOP例4:(1)证明:连结OD、DA,AB是O的直径,BDA=90又ABD=30,AD=AB=OA又AC=AO,ODC=90CD切O于点D(2) 方法一:连结PE,由(1)知DAB=60,又AD=AC C=30又DE切P于E,PECEPE=CP 又PE=BP=R,CA=AO=OB= r3r=R,即方法二:连结PE, 又DE切P于E,PECEODPE=即 ,例5:解:(1)相切于点A, (2)PAOBAD,且12,4=4=90, 在RtBAD中, 方法一:过点O作OEBC于点E
7、, = 方法二:在RtOAP中,AP=6tan600=3,OP=2OA=6, DP=APAD=3 过点C作CFAP于F,CPF=300, CF= S四边形OADC=SOAPSCDP =APOADPCF =() =例6:解(1)AB为直径,CEAB ,CGEG 在RtCOG中,OGOC OCG300,COA600 又CDE的度数弧CAE的度数的度数COA的度数600 FDM1800CDE1200(2)证明:COM1800COA1200 COMFDM在RtCGM和RtEGM中 RtCGMRtEGMGMCGME 又DMFGMEOMCDMFFDMCOM(3)解:结论仍成立。FDM1800CDE CDE的度数弧CAE的度数的度数COA的度数 FDM1800COACOM AB为直径,CEAB; 在RtCGM和RtEGM中 RtCGMRtEGM GMCGME FDMCOM【练习】:1、PACB OD 1 22、解:(1)连结AD,由切割线定理可知,= 即 而PDAPAB在RtBDA中, 即15 即AC=3、证明:(1)AB是O的直径,DEAB ACBBEGAEF900 GBAB900 即GA RtAEFRtGEB ,即 (2)DEABDEEM4连结AD,AB是O的直径,BDBCACBADBDBC900DAF900由RtAEFRtADE可得由相交弦定理可得MGEGEM844.-