《圆锥的体积》课改教学课件.ppt》由会员分享,可在线阅读,更多相关《圆锥的体积》课改教学课件.ppt(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 1、认真阅读教本第、认真阅读教本第25-26页,思考怎样验证页,思考怎样验证圆锥的体积和圆柱的体积之间的关系?圆锥的体积和圆柱的体积之间的关系?2通过阅读,你能发现等底等高的圆柱、圆通过阅读,你能发现等底等高的圆柱、圆锥体积之间的关系吗?你能用字母表示出来锥体积之间的关系吗?你能用字母表示出来吗?并思考:计算圆锥的体积需要哪些已知吗?并思考:计算圆锥的体积需要哪些已知条件。条件。 3尝试着解答尝试着解答P26例例3。1、通过看一看,比一比,说一说小组中的、通过看一看,比一比,说一说小组中的圆柱和圆锥的底和高分别有什么关系?圆柱和圆锥的底和高分别有什么关系?2、小组实验,借助实验报告表你会发现
2、圆、小组实验,借助实验报告表你会发现圆柱、圆锥的体积有怎样的关系?柱、圆锥的体积有怎样的关系?3、计算圆锥的体积需要哪些已知条件?、计算圆锥的体积需要哪些已知条件?4、P26例例3的解答过程。的解答过程。 1 1用字母表示数的意义。举例说说用字母可以表示什么?用字母表示数的意义。举例说说用字母可以表示什么?2 2用字母表示数时要注意什么?用字母表示数时要注意什么?3 3什么叫做方程、解方程、方程的解?什么叫做方程、解方程、方程的解?4 4解方程的依据是什么?解方程的依据是什么?5 5结合例结合例1 1和和p85“p85“做一做做一做”说说可以用解方程和解比例解决哪些数学问说说可以用解方程和解比
3、例解决哪些数学问题?题?6 6尝试完成尝试完成“做一做做一做”。实验器材实验器材一桶水、等底等高一桶水、等底等高的圆柱和圆锥各一个的圆柱和圆锥各一个 实验过程实验过程 在空圆柱里装在空圆柱里装 满水倒入空圆锥满水倒入空圆锥 里,()次里,()次 正好倒完。正好倒完。 在空圆锥里装在空圆锥里装 满水倒入空圆柱满水倒入空圆柱 里,()次里,()次 正好装满。正好装满。结结 论论圆柱的体积是圆柱的体积是和它(和它( )的 圆 锥 体 积 的的 圆 锥 体 积 的( )倍。)倍。 圆锥体积圆锥体积计算公式计算公式 V圆锥的体积是圆锥的体积是和它(和它( )的圆柱体积的的圆柱体积的)()(3 33 3等
4、底等高等底等高等底等高等底等高3 33 31 13 31 1S S h h例3:工地上有一些沙子,堆起来近似于工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)(得数保留两位小数)4m1.2m 例3:工地上有一些沙子,堆起来近似于一工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?个圆锥,这堆沙子大约多少立方米?(得(得数保留两位小数)数保留两位小数)(1)沙堆底面积:)沙堆底面积: 3.14() 42=3.144=12.56(平方米平方米)(2)沙堆的体积:)沙堆的体积: 12.561.213= 5.024(立
5、方米)(立方米)答:这堆沙子大约答:这堆沙子大约5.02立方米。立方米。4m1.2m 5.02(立方米)(立方米) 1、圆柱体的体积一定比圆锥体的体积、圆柱体的体积一定比圆锥体的体积 大。(大。( ) 2、圆锥的体积等于和它等底等高的圆柱体的、圆锥的体积等于和它等底等高的圆柱体的 。(。( ) 3、正方体、长方体、圆锥体的体积都等于底面积、正方体、长方体、圆锥体的体积都等于底面积高。高。 ( ) 4、一个圆锥,底面积是一个圆锥,底面积是6平方厘米,高是平方厘米,高是10厘米,体积厘米,体积是是60立方厘米。(立方厘米。( )31 判断1、将一个圆柱体铝块熔铸成圆锥体,它的(、将一个圆柱体铝块熔
6、铸成圆锥体,它的( )不变。不变。A 、体积、体积 B、表面积、表面积 C、底面积、底面积 D、侧面积、侧面积2、底面积、体积分别相等的圆柱体和圆锥体,如果、底面积、体积分别相等的圆柱体和圆锥体,如果圆锥的高是圆锥的高是15厘米,那么圆柱的高是(厘米,那么圆柱的高是( )厘米。)厘米。A 、5厘米厘米 B、15厘米厘米 C、30厘米厘米 D、45厘米厘米选择AA练习22、求下面各圆锥的体积。(单位:厘米)、求下面各圆锥的体积。(单位:厘米)(1) (2) 7 7 8 8 1010 3 3 有一根底面直径是有一根底面直径是6厘米,长是厘米,长是15厘米的圆厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?零件。要削去钢材多少立方厘米?15厘米厘米6厘米厘米总结反思总结反思 我进步我进步 可以从以下几点总结:可以从以下几点总结: 1、总结自己在本节课中学到的知识。、总结自己在本节课中学到的知识。 2、谈一谈自己在本课中的表现。、谈一谈自己在本课中的表现。