《初中数学 第一章 有理数复习课教案.pdf》由会员分享,可在线阅读,更多相关《初中数学 第一章 有理数复习课教案.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第 1 1 章章 有理数复习教案有理数复习教案一一. . 学习目标学习目标1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。2. 掌握有理数的加、 减、乘、除、乘方的运算法则, 能进行有理数的加、 减、 乘、除、乘方的运算和简单的混合运算;3.养成“言必有据、做必有理、答必正确”的良好思维习惯。增进“应用数学知识解决实际问题的数学思想。二二. . 知识重点:知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。三三. . 知识难点:知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。四考点:四考点:绝对
2、值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。五五. . 教学过程教学过程一一. . 知识梳理:知识梳理:(一)、有理数的基础知识1、三个重要的定义:(1)正数:像 1、2.5、这样大于 0 的数叫做正数; (2)负数:在正数前面加上“”号,表示比 0 小的数叫做负数;(3)0 即不是正数也不是负数。2、有理数的分类:(1)按定义分类:(2)按性质符号分类:正整数正整数正有理数整数 0正分数负整数有理数有理数0负整数正分数分数负有理数负分数负分数3、数轴数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示 0第- 6 -页共 6 页(叫做原点) , 选取某
3、一长度作为单位长度, 规定直线上向右的方向为正方向, 就得到数轴。在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于 0,正数大于负数。4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0 的相反数是 0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。(2)绝对值的代数意义:一个正数的绝对值是它本身;0 的绝对值是 0;一个负数的绝对值是它的相反数,可用字母a 表示如下:(a 0)aa 0(a 0) a(a 0)(3)两个负数比较大小,绝对值大的反而
4、小。(二)、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号, 并用较大的绝对值减去较小的绝对值; 互为相反的两个数相加得 0;一个数同 0 相加,仍得这个数。(2)有理数加法的运算律:加法的交换律 :a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。(2) 有理数减法常见的
5、错误: 顾此失彼, 没有顾到结果的符号; 仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;第- 6 -页共 6 页任何数与 0 相乘都得 0。(2) 有理数乘法的运算律: 交换律: ab=ba; 结合律: (ab)c=a(bc); 交换律: a(b+c)=ab+ac。(3)倒数的定义: 乘积是 1 的两个有理数互为倒数, 即 ab=1,那么 a 和 b 互为倒数;倒数也可以看成是把分子
6、分母的位置颠倒过来。4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0 不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0 除以任何一个不等于 0 的数都等于 0。5、有理数的乘法(1)有理数的乘法的定义:求几个相同因数 a 的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中 a 叫做底数,表示相同的因数,n 叫做指数,表示相同因数的个数,它所表示的意义是n 个 a 相乘,不是n 乘以 a,乘方的结果叫做幂。(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、
7、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。比较复杂的混合运算,一般可先根据题中的加减运算, 把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的, 同时要注意灵活运用运算律简化运算。(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算, 以提高运算速度及运算能力。二、典型例题二、典型例题例题 1:将下列数分别填入相应的集合中:将下列数分别填入相应的集合中:n正数集合:正数集合: 整数集合:整数集合: 分数集合:分数集合: 负数
8、集合:负数集合: 例题 2:选择第- 6 -页共 6 页(1).已知 x 是绝对值最小的有理数, y 是最大的负整数, 则代数式 x +3x y+3xy +y的值是( ) A.0 B.1 C.-3 D.-13323(2).已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:a c b;a b;ab 0;ca 0中,错误的个数是()个A.1 B.2 C.3 D.4(3).如果知道 a 与 b 互为相反数,且 x 与 y 互为倒数,那么代数式|a + b|-2xy的值为()A.0 B.-2 C.-1 D.无法确定例题 3: 计算(1) 20 (14) (18) 13 (2)( )33(
9、 )231202(3)(4) 14+()(2)3(3)381313例 4. 邮递员骑车从邮局出发, 先向南骑行 2km 到达 A 村, 继续向南骑行 3km 到达 B村,然后向北骑行 9km 到达 C 村,最后回到邮局。(1)以邮局为原点,以向北方向为正方向,用 1cm 表示 1km 画出数轴,并在该数轴上表示出 A、B、C 三个村庄的位置。(2)(2)C 村离 A 村有多远?(2)(3)邮递员一共骑行了多少千米?(2)第- 6 -页共 6 页三三. .课堂练习课堂练习41.计算 2 (2 )所得的结果是()4A、0 B、32 C、32 D、162. 有理数中倒数等于它本身的数一定是()A、1
10、 B、0 C、-1 D、13. 若x1 y 2,则x y=()A、 1 B、1 C、0 D、34. 有理数 a,b 如图所示位置,则正确的是()A、a+b0 B、ab0 C、b-a|b|5. ( 5)+( 6)=_;( 5)( 6)=_;( 5)( 6)=_;( 5)6=_。1414321_;321_ _。 2 =_;6. 2 _;2792227.12002 (1)2003_;48 . 计算(1)(2) (4)( )(1)(2)2 四四. .课堂小结课堂小结五五. . 课堂作业课堂作业把下列各数填在相应的大括号内:把下列各数填在相应的大括号内:-3,+2123342()29332212,0.2
11、75,2,0,-1.04,-8,-100,-, 32+3473负整数集合: ;正分数集合: ;负分数集合: 第- 6 -页共 6 页8、(157-+)(-36)29129、- 7-(-3)6+5 10、-1 -1-(1-0.5241)633.某检修小组 1 乘一辆汽车沿公路检修线路,约定向东为正。某天从A 地出发到收工时,行走记录为(单位:千米): +15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。另一小组 2 也从 A 地出发,在南北向修,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8。(1)分别计算收工时,1,2 两组在 A 地的哪一边,距A 地多远?(2)若每千米汽车耗油a 升,求出发到收工各耗油多少升?第- 6 -页共 6 页