《2021-2022年收藏的精品资料中考数学考点总动员系列 专题50 函数的应用.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料中考数学考点总动员系列 专题50 函数的应用.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题50 函数的应用聚焦考点温习理解1函数的应用主要涉及到经济决策、市场经济等方面的应用2利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案3利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题名师点睛典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两
2、家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。假设组团参加甲、乙两家旅行社两日游的人数均为x人。(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。【答案】(1)甲旅行社:=.乙旅行社:当时,=.当x20时,=.(2)胡老师选择乙旅行社.【解析】试题分析:(1)首先根据优惠方案:
3、甲总费用y=人均报价的0.85倍人数;乙总费用y=20个人九折的费用+超过的人数报价打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用【点睛】本题根据实际问题考查了一次函数的运用解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论【举一反三】(2015黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条路
4、跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示。已知小明从家出发7分钟时与家的距离为1200米,从上车到他到达学校共用10分钟。下列说法:小明从家出发5分钟时乘上公交车 公交车的速度为400米/分钟小明下公交车后跑向学校的速度为100米/分钟 小明上课没有有迟到。其中正确的个数是( )(A)1个 (B)2个 (C)3个 (D)4个【答案】D考点:一次函数的实际应用.考点典例二、反比例函数相关应用题【例2】某地计划用120180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米(1)写出
5、运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?【答案】(1)y=(2x3);(2)原计划每天运送2.5万米3,实际每天运送3万米3【解析】试题分析:(1)利用“每天的工作量天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;试题解析:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x
6、=2,自变量的取值范围为:2x3,y=(2x3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=-3经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3考点:反比例函数的应用;分式方程的应用【点睛】本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式【举一反三】甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购
7、买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;乙商场按顾客购买商品的总金额打6折促销(1)若顾客在甲商场购买了510元的商品,付款时应付多少元钱?(2)若顾客在甲商场购买商品的总金额为x(400x600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200x400)元,你认为选择哪家商场购买商品花钱较少?请说明理由【答案】(1)顾客在甲商场购买了510元的商品,付款时应付310元(2)p与x之间的函数关系式为p=,p随x的增大而减小;
8、(3)250x400,乙商场花钱较少,200x250,甲商场花钱较少,x=250,两家商场花钱一样多【解析】试题分析:(1)根据题意直接列出算式510-200即可;(2)根据商家的优惠率即可列出p与x之间的函数关系式,并能得出p随x的变化情况;(3)先设购买商品的总金额为x元,(200x400),得出甲商场需花x-100元,乙商场需花0.6x元,然后分三种情况列出不等式和方程即可.考点:反比例函数的应用【点睛】此题考查了反比例函数的应用,用到的知识点是反比例函数的性质,一元一次不等式等,关键是根据题意求出函数的解析式考点典例三、二次函数相关应用题【例3】(2015.山东青岛第22题,10分)(
9、本小题满分10分)如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m按照图中所示的直角坐标系,抛物线可以用表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m。 (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】,拱顶D到地面OA的距离为10米;可以通过;4【解析】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b
10、和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.考点:二次函数的实际应用.【点睛】根据图形特点,建立恰当的平面直角坐标系,将实际问题转化为数学问题建立平面直角坐标系时,要尽量将图形放置于特殊位置,这样便于解题【举一反三】(2015.安徽省,第22题,12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的三块矩形
11、区域,而且这三块矩形区域的面积相等设BC的长度为xm,矩形区域ABCD的面积为ym2(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【答案】(1)(0x40);(2)当x=20时,y有最大值,最大值是300平方米.【解析】试题分析:(1)设AE=a,由AEAD=2BEBC,AD=BC可得BE=a,AB=a;根据周长为80米得方程2x+3a+2a=80,解得a=20x.由y=ABBC代入即可求y与x之间的函数关系式;根据题意0BC+EF 80,所以x的取值范围为0x40;(2)把y与x之间的函数关系式化为顶点式,利用二次函数的性质即可求解.考
12、点:二次函数的应用及性质.课时作业能力提升1.(2015.山东临沂第10题,3分)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米小时)的函数关系式是( )(A) . (B) . (C) . (D) .【答案】B【解析】试题分析:根据行程问题的公式路程=速度时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式5.(2015.山东莱芜第12题,3分)在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )A甲先到达终点B前30分钟,甲在乙的
13、前面C第48分钟时,两人第一次相遇D这次比赛的全程是28千米【答案】D【解析】试题分析:根据函数的图像,找到相关信息,然后可判断. A、由横坐标看,甲用时86分,乙用时96分,甲先到达终点,说法正确;B、由横坐标看,在30分钟以前,说明用相同的时间,甲走的路程多于乙的路程,那么甲在乙的前面,说法正确;C、由图象上两点(30,10),(66,14)可得线段AB的解析式为y=x+,那么由图象可得路程为12时,出现交点,当y=12时,x=48,说法正确;D、乙是匀速运动,速度为:1248=,那么全程为96=24千米,说法错误.故选D考点:函数的图像的应用3.(2015湖北鄂州,9题,3分)甲、乙两车
14、从A城出发匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示则下列结论: A,B两城相距300千米; 乙车比甲车晚出发1小时,却早到1小时; 乙车出发后2.5小时追上甲车; 当甲、乙两车相距50千米时,t =或其中正确的结论有( )A1个 B2个 C3个 D4个【答案】C.【解析】试题分析:由图象可知,A,B两城相距300千米, 判断正确;乙车比甲车晚出发1小时,却早到1小时,判断正确;先求出每段函数的解析式,再求出交点坐标即可判断正确与否;列方程求解即可试题解析:由图象可知,A,B两城相距300千米, 判断正确;乙车比甲车晚出发
15、1小时,却早到1小时,判断正确;设甲的解析式为y=k1x,把(5,300)代入,求得:k1=60,所以y=60x;设乙的解析式为:y=k2x+b,把(1,0)(4,300)代入y=k2x+b,可求得:k2=100,b=100,故y=100x100,联立,解得:x=2.5,y=150由此知乙车出发后1.5小时追上甲车;故错误;分两种情况:i)当乙在甲后时,设t小时后,两车相距50千米得:60t100(t1)= 50解得:t=;i) 当乙在甲前时,设t小时后,两车相距50千米得:100(t1) 60t= 50解得:t=;故正确正确的结论有3个故选C.考点:函数的图象4.(2015.山东潍坊,第11
16、题,3分)如图,有一块边长为6cm的正三角形纸板,在它的的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A. B. C. D. 【答案】C考点:1.等边三角形的性质;2.二次函数的应用.5.(2015.山东青岛第11题,3分)把一个长、宽、高分别为3cm、2cm、1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S()与高之间的函数关系是为_【答案】S=【解析】试题分析:根据题意可得长方体的体积与圆柱体的体积相等,则圆柱体的体积=长方体的体积=321=6立方厘米,即Sh=6,则S=.考点:反比例函数的应用6.(201
17、5湖北孝感)某市为提倡节约用水,采取分段收费若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元小明家5月份交水费64元,则他家该月用水 m3【答案】【解析】试题分析:6440可以判定小明家用水超过20,可以设用水位x,则40+3(x-20)=64,解得x=28, 考点:分段函数.7.(2015黑龙江绥化)现有甲、乙两个容器,分别装有进水管和出水管 ,两容器的进出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管 ,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进出水管,打开和关闭水管的时
18、间忽略不计。容器中的水量y(升)与乙容器注水时间x(分)之间的关系如图所示: (1)求甲容器的进、出水速度. (2)甲容器进、出水管都关闭后,是否存在两容器的水量相等。若存在,求出此时的时间. (3)若使两容器第12分钟时水量相等,则乙容器6分钟后进水速度应变为多少?【答案】(1)5(升/分),3(升/分);(2)存在,8分钟;(3)升/分.【解析】试题分析:(1)根据点(3,10)可求出甲的进水速度是5(升/分),再结合点(8,10)可求出甲的出水速度;(2)先求出点A的坐标,然后利用待定系数法可求出乙的函数解析式,令y=0求出x的值即可;(3)先求出乙6分钟时的水量,然后根据后6分钟的水量
19、除以时间计算即可.试题解析:解:(1)甲的进水速度:=5(升/分),.1分甲的出水速度:(升/分);.1分(2)存在,由图可知,甲容器在第3分钟时水量为:5(3-2)=5升,所以A(3,5) .1分设,根据题意得:解得:,所以,当时,x=8,所以乙容器进水管打开6分钟时两容器的水量相等.2分;(1) 当x=6时,所以(18-8)(12-6)=升/分,所以乙容器6分钟后进水速度应变为升/分. .3分考点:函数图象的应用.8.(2015.山东威海,第21题)为绿化校园,某校计划购进A、B两种树苗,共21课已知A种树苗每棵90元,B种树苗每棵70元设购买B种树苗x棵,购买两种树苗所需费用为y元(1)
20、y与x的函数关系式为: ;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用【答案】y=20x+1890;购买B种树苗10棵,A种树苗11棵,所需费用为1690元.(2)购买B种树苗的数量少于A种树苗的数量,x21x,解得:x10.5,又x1,x的取值范围为:1x10,且x为整数,y=20x+1890,k=200,y随x的增大而减小,当x=10时,y有最小值,最小值为:2010+1890=1690,使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元考点:一次函数的应用9.(2015湖北衡阳,25题,分)(本小题满分8分)某药品研
21、究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验测得成人服药后血液中药物深度(微克/毫升)与服药时间小时之间的函数关系如图所示(当时,与成反比) (1)根据图象分别求出血液中药物浓度上升和下降阶段与之间的函数关系式; (2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?【答案】(1) 血液中药物浓度上升时;血液中药物浓度下降时, (2)血液中药物浓度不低于4微克/毫升持续时间为6小时试题解析:解:(1)由图象可知,当时,与成正比例关系,设 由图象可知,当时,解得:;又由题意可知:当时,与成反比,设由图象可知,当时,;即:血液中药物浓度上升时;血液中药物浓度下降下 (2)血液
22、中药物浓度不低于4微克/毫升即: 且,解得且;,即持续时间为6小时考点: 待定系数法;一次函数与反比例函数的综合应用;不等式10.某种上屏每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx75其图象如图(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?【答案】(1)销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元【解析】试题分析:(1)由已知,应用待定系数法,可得二次函数解析式,根据二次函数顶点坐
23、标的性质,可得答案.(2)根据函数值大于或等于16,可得不等式的解集,可得答案试题解析:解:(1)y=ax2+bx75图象过点(5,0)、(7,16),解得.y与x之间的函数关系为.当x=10时,y最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.(2)函数图象的对称轴为直线x=10,点(7,16)关于对称轴的对称点是(13,16).又函数y=x2+20x75图象开口向下,当7x13时,y16答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元考点:1.二次函数的应用;2.曲线上点的坐标与方程的关系;3. 待定系数法的应用;4.二次函数的性
24、质;5.数形结合思想的应用11.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?【答案】(1)y=-2x+60(10x18);(2)销售价为18元时,每天的销售利润最大,最大利润是192元
25、(3)15元【解析】试题分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值试题解析:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,y与x之间的函数关系式y=-2x+60(10x18);考点:二次函数的应用12.将油箱注满k升油后,轿车科行驶的总路程S(
26、单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k0)已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?【答案】(1)s=;(2)875.【解析】试题分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值试题解析:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s=875千米,故该轿车可以行驶多875米;考点:反比例函数的应用