《一次函数题型总结范文可参考.doc》由会员分享,可在线阅读,更多相关《一次函数题型总结范文可参考.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一次函数题型总结一次函数题型总结一次函数题型总结函数定义1、判断下列变化过程存在函数关系的是()A.x,y变量,y2xB.人身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数yx2x1,当xa时,y=1,则a的值为()3、下列各曲线中不能表示y是x的函数是()。OxOxOxOxyyyy正比例函数1、下列各函数中,y与x成正比例函数关系的是(其中k为常数)()A、y=3x2B、y=(k+1)xC、y=(|k|+1)xD、y=x2、如果y=kx+b,当时,y叫做x的正比例函数3、一次函数y=kx+k+1,当k=时,y叫做x正比例函数2一次函数的定义1、下列函数关系中
2、,是一次函数的个数是()11xy=y=y=210xy=x22y=+1x33xA、1B、2C、3D、42、若函数y=(3m)xm-9是正比例函数,则m=。3、当m、n为何值时,函数y=(5m3)x2-n+(m+n)(1)是一次函数(2)是正比例函数一次函数与坐标系1.一次函数y=2x+4的图象经过第象限,y的值随x的值增大而(增大或减少)图象与x轴交点坐标是,与y轴的交点坐标是2.已知y+4与x成正比例,且当x=2时,y=1,则当x=3时,y=3.已知k0,b0,则直线y=kx+b不经过第象限4、若函数y=x+m与y=4x1的图象交于y轴上一点,则m的值是()5.如图,表示一次函数ymx+n与正
3、比例函数y=mnx(m,n是常数,且mn0)图像的是().6、(2022福建福州)已知一次函数y(a1)xb的图象如图1所示,那么a的取值范围是()AAa1Ba1Ca0Da07一次函数y=kx+(k-3)的函数图象不可能是()yOxy图154321BO123456xA(2,4)待定系数法求一次函数解析式1.(2022江西省南昌)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.2.如图,一次函数y=kx+b的图象经过A、B两点,与x轴相交于C点求:C(1)直线AC的函数解析式;(2)设点(a,2)在这个函数图象上,求a的值;2、(2022甘肃陇南)如图,两摞相同规格的饭碗整齐地叠放在
4、桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4、(2022福建晋江)东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1、y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系。试用文字说明:交点P所表示的实际意义。试求出A、B两地之间的距离。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、直线y=kx+b的图像经过A(3,4)和点B(2,7),7.5y(千米)y1Py2O122.5
5、34x(小时)3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。5、若一次函数y=kx+b的自变量x的取值范围是-2x6,相应的函数值的范围是-11y9,求此函数的解析式。6、已知直线y=kx+b与直线y=-3x+7关于y轴对称,求k、b的值。7、已知直线y=kx+b与直线y=-3x+7关于x轴对称,求k、b的值。8、已知直线y=kx+b与直线y=-3x+7关于原点对称,求k、b的值。函数图像的平移1.把直线y2
6、3x1向上平移3个单位所得到的直线的函数解析式为2、(2022浙江湖州)将直线y2x向右平移2个单位所得的直线的解析式是()。CA、y2x2B、y2x2C、y2(x2)D、y2(x2)3、(2022黄石)将函数y6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为.4、在平面直角坐标系中,将直线y2x1向下平移4个单位长度后。所得直线的解析式为函数的增加性1、已知点A(x1,y1)和点B(x2,y2)在同一条直线y=kx+b上,且k0若x1x2,则y1与y2的关系是()2、(2022福建晋江)已知一次函数ykxb的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上
7、述条件的一个解析式:.3、(2022河南)写出一个y随x的增大而增大的一次函数的解析式:.4、(2022年福建省泉州)在一次函数y2x3中,y随x的增大而(填“增大”或“减小”),当0x5时,y的最小值为.函数图像与坐标轴围成的三角形的面积1、函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是。2.已知直线y=x+6与x轴、y轴围成一个三角形,则这个三角形面积为_。3、已知:在直角坐标系中,一次函数y=A、B.若以AB为一边的等腰ABC的底角为30。点C在x轴上,求点C的坐标.4、(2022北京)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.求A,B两点
8、的坐标;错误!未找到引用源。过B点作直线BP与x轴相交于P,且使OP=2OA,求ABP的面积.5(2022浙江绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则OAB为此函数的坐标三角形.(1)求函数y(2)若函数y343433x2的图象分别与x轴、y轴相交于yBOA第21题图xx3的坐标三角形的三条边长;xb(b为常数)的坐标三角形周长为16,求此三角形面积.函数图像中的计算问题1、(2022天门、潜江、仙桃)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙
9、两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:乙比甲提前12分钟到达;甲的平均速度为15千米/小时;乙走了8km后遇到甲;乙出发6分钟后追上甲.其中正确的有()路程/千米4035CBA202200.511.522.5时间/时32、(2022江苏南京)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m时,按2元m3计费;月用水量超过20m3时,其中的20m3仍按2元m3收费,超过部分按2.6元m3计费设每户家庭用用水量为xm3时,应交水费y元(1)分别求出0x20和x20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下
10、:月份交费金额四月份30元五月份34元六月份42.6元小明家这个季度共用水多少立方米?3、(2022湖北宜昌)2022年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕20日上午9时,参赛龙舟从黄陵庙同时出发其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示甲队在上午11时30分到达终点黄柏河港(1)哪个队先到达终点?乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远?应用题中的分段函数1某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨随后又
11、关闭进油管,只开出油管,直至将油罐内的油放完假设在单位时间内进油管与出油管的流量分别保持不变写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围2、(2022湖北襄樊)为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元其中,收割机的进价和售价见下表:进价(万元/台)售价(万元/台)A型收割机5.3B型收割机3.664设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元(1)试写出y与x
12、的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?3、(2022陕西西安)某蒜薹(ti)生产基地喜获丰收,收获蒜薹200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨平均的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨)成本(元/吨)3000700450010005500120223若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.(1)求y与x之
13、间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润。4、我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元设从A村运往C仓库的柑桔重量为x吨,A,B两村运往两仓库的柑桔运输费用分别为yA元和yB元(1)请填写下表,并求出yA、yB与x之间的函数关系式;收运地AB总计地Cx吨240吨D260吨总计200吨300吨500吨(2)试讨论A
14、,B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值一次函数与二元一次方程的关系1、(2022四川乐山)已知一次函数ykxb的图象如图(6)所示,当x1时,y的取值范围是()y02x4y2y4图1y2y04y02、(2022浙江金华)一次函数y1kxb与y2xa的图象如图,则下列结论k0;当x3时,y1y2中,正确的个数是()A0B14xy1y2x3a0;y2xaC2D3O3xy1kxb3、方程组第2题的解是,则一次函数y=4x1与y=2x+3的图象交点为。4、(2022湖北武汉)如图,
15、直线y1kxb过点A(02),且与直线y2mx交于点P(1,m),则不等式组mxkxbmx2的解集是5、若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()A、6或-6B、6C、-6D、6和36、(2022湖北咸宁)如图,直线l1:yx1与直线l2:ymxn相交于点y2Oa(第13题)Pxl2P(a,2),则关于x的不等式x1mxn的解集为l1函数图像平行1在同一平面直角坐标系中,对于函数y=-x-1,y=x+1,y=-x+1,y=-2(x+1)的图象,下列说法正确的是()A通过点(-1,0)的是B交点在y轴上的是C相互平行的是D关于x轴对称的是2、已知:一次函数y(1
16、2m)x+m2,问是否存在实数m,使(1)经过原点(2)y随x的增大而减小(3)该函数图象经过第一、三、四象限(4)与x轴交于正半轴(5)平行于直线y-3x2(6)经过点(-4,2)3、已知点A(1,2)和点B(4,2),若点C的坐标为(1,m),问:当m为多少时,AC+BC有最小值?扩展阅读:一次函数常见题型小结一次函数常见题型小结(复习)一、利用一次函数的定义解题例1已知一次函数y=(k-1)x|k|+3,求k的值。二、确立函数解析式(1)利用已知的函数关系,求函数解析式例1已知y+2与x成正比例,且当x=-2时,y=0。(1)求y与x间的函数关系式;(2)画出函数图象(3)观察图像,当x
17、取何值时,y0?(4)若点(m,6)在函数图象上,求m的值(5)设点P在y轴上,(2)中的图像与x轴,y轴分别交于A、B两点,且SABP=6,求P点坐标。例2已知y=y1+y2,其中y1与x成正比例,y2与x-1成正比例,当x=-1时,y=2;当x=2时,y=5,求y与x的函数关系式(2)利用已知两点,求函数解析式例1已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4)。(1)求一次函数的解析式,并在直角坐标系内画这个函数的图象;(2)如果(1)中所求的函数y的值在4y4范围内,求相应的x的值在什么范围内;(3)利用几何关系求函数解析式例1已知直线y=kx+b平行于直线y=-3x+4,且于直线y=2x-6的交点在x轴上,求这个函数的解析式题型一观察归纳型即是通过观察数式规律归纳出函数解析式,再进行应用题型二数量关系型即是通过分析题中的数量关系直接得出函数解析式,再进行应用题型三待定系数法型即是已知函数是一次函数,通过待定系数法求出函数解析式,再进行应用.题型四与几何知识相结合题型五方案设计题题型六一次函数与一次不等式、方程(组)综合考题第 9 页 共 9 页