《一次函数知识点总结范文可参考.doc》由会员分享,可在线阅读,更多相关《一次函数知识点总结范文可参考.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一次函数知识点总结一次函数知识点总结一次函数知识点总结【基本要点】1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是_,常量是_。在圆的周长公式C=2r中,变量是_,常量是_.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。注:这是课本对于函数的定义,在理解与实际运用中我们要注意以下几点:1、函数只能描述两个变量之间的关系,多一个少一个变量都是不对
2、的;如:y=xz中有三个变量,就不是函数;y=0中只有一个变量,也不是函数;而y=0(x0)却是函数,因为括号中标明了自变量的取值范围;2、当自变量去每一个确定的值时因变量只能取唯一确定的值相对应,反之,当因变量取每一个确定的值时自变量可以去若干个值相对应;因为这两个变量有先变与后变的问题,让后变的先取一个值,先变的就不一定只取一个值;3、我们只能说函数值是自变量的函数,或用自变量来表示函数值,如:a是b的函数就说明a是函数值,b是自变量;用y表示x就说明y是自变量,x是函数值;任何函数都要标明谁是谁的函数,不能随便说一个解析式是不是函数,如:Y=x2,只能说y是x的函数,就不能说x是y的函数
3、;4、函数解析式的表示:只有函数值写在等号左边,含有自变量的式子写在等号右边;注意不能写成2y=3x-3或y2=3x-3的形式;5、任何函数都包含自变量的取值范围,如果没指明说明自变量的取值范围是任意实数。自变量的取值范围从以下几个方面把握:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。例题:写出下列函数中自变量x的取值范围y=2x_.y=1_.y=4x2_.y=x2x2_.x23、函数的图像
4、一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。5、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。6、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够
5、准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。7、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)k不为零x指数为1b取零当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;
6、当by2,则x1与x2的大小关系是()A.x1x2B.x10,且y1y2。根据一次函数的性质“当k0时,y随x的增大而增大”,得x1x2。故选A。2、若m0,n0,则一次函数y=mx+n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3、一次函数y=kx+b满足kb0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限解:由kb0,知k、b同号。因为y随x的增大而减小,所以k任何一元一次方程到可以转化为ax+b=0(a,b为常数,a0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当
7、于已知直线y=ax+b确定它与x轴的交点的横坐标的值.12、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b0或ax+b扩展阅读:初二数学一次函数知识点总结一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是_,常量是_。在圆的周长公式C=2r中,变量是_,常量是_.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,
8、y是x的函数。*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应1-12例题:下列函数(1)y=x(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函数的有()x(A)4个(B)3个(C)2个(D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
9、例题:下列函数中,自变量x的取值范围是x2的是()Ay=2xBy=1x2Cy=4xDy=2x2x2函数y已知函数yA.52yx5中自变量x的取值范围是_.1232x2,当1x1时,y的取值范围是()B.32y52C.32y52D.32y525、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应
10、的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)k不为零x指数为1b取零当k0时,直线y=kx经
11、过三、一象限,从左向右上升,即随x的增大y也增大;当k(2)必过点:(0,0)、(1,k)(3)走向:k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b若直线yxa和直线yxb的交点坐标为(m,8),则ab_.已知函数y3x+1,当自变量增加m时,相应的函数值增加()3m+13mm3m111、一次函数y=kxb的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),即横坐标或纵坐标为0的点.b0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b0或ax+b第 7 页 共 7 页