《高二数学-知识讲解_《推理与证明》全章复习与随堂_基础.doc》由会员分享,可在线阅读,更多相关《高二数学-知识讲解_《推理与证明》全章复习与随堂_基础.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、推理与证明全章复习与巩固编稿:张林娟 审稿:孙永钊 【考纲要求】1.能对推理与证明的各种方法进行梳理,建立知识网络,把握整体结构.2.能比较数学证明的几种基本方法的思维过程和特点,灵活选用各种方法进行一些数学证明.3.了解合情推理和演绎推理之间的联系、差异和各自所起的作用.【知识网络】【考点梳理】要点一:归纳与类比数学推理是由一个或几个已知的判断(或前提),推导出一个未知结论的思维过程一般包括合情推理和演绎推理,而归纳和类比是合情推理的两种主要形式.归纳推理概念根据某类事物的部分对象具有某种特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称
2、归纳)归纳推理是由部分到整体、由个别到一般的推理,一般分为完全归纳推理与不完全归纳推理.一般步骤推广为明确表述的一般命题(猜想)检 验观察特例发现相似性类比推理概念 两类不同的对象具有某些共同的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程叫类比推理 一般步骤(1)找出两类事物之间可以确切表述的相似性或一致性(2)用一类事物的性质推测另一类事物的性质,得出一个明确的命题(猜想)(3)检验猜想要点诠释:(1)归纳推理是由部分到整体、由个别到一般的推理,因而由归纳所得的结论超越了前提所包含的范围;而类比是从一种事物的特殊属性推测另一种事物的特殊属性
3、.(2)归纳推理的前提是特殊的情况,所以归纳推理是立足于观察、实验和经验的基础上的;类比是根据已经掌握了的事物的属性,推测正在研究中的事物的属性,它以旧有认识为基础,类比出新的结果.(3)归纳和类比的结果是猜测性的,不一定可靠,但它却具有发现的功能(4)注意合情推理和演绎推理的区别演绎推理是从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,是由一般到特殊的推理演绎推理的特征是前提为真,结论必为真要点二:综合法与分析法1.综合法定义:综合法是中学数学证明中最常用的方法,它是这样一种思维方法:从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证
4、明的结论,直到完成命题的证明综合法是一种执因索果的证明方法,又叫顺推法思维框图:用表示已知条件,表示要证明的结论,为已知的定义、定理、公理等,则综合法可用框图表示为:(已知) (逐步推导结论成立的必要条件) (结论)2. 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.,分析法是一种执果索因的证明方法,又叫逆推法思维框图:用表示已知条件和已有的定义、公理、公式、定理等,所要证明的结论,则用分析法证明可用框图表示为:
5、(结论) (逐步寻找使结论成立的充分条件) (已知)要点诠释:(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程分析法一般用于综合法难以实施的时候(2)有不等式的证明,需要把综合法和分
6、析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P若由P可以推出Q成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点 命题“若P则Q”的推演过程可表示为: 要点三:反证法中学阶段反正法是最常见的间接证法.定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等
7、矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下: 反证法的一般步骤: (1)反设:假设所要证明的结论不成立,假设结论的反面成立; (2)归谬:由“反设”出发,通过正确的推理,导出矛盾与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立要点诠释:(1)反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独
8、特的效果(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.【典型例题】类型一:归纳与类比例1已知图(a)、(b)、(c)、(d)为四个平面图形:(1)数一数,每个平面图各有多少个顶点?多少条边?它们将平面各分成了多少个区域?(2)推断一个平面图形的顶点数,边数,区域数之间的关系.【思路点拨】先由四个平面图形易得(1),再由(1)寻找,之间的规律,得出一个一般性的结论.【解析】(1)各平面图形的顶点数、边数、区域数如下表:平面图形顶点数()边数()区域数()a332b8126c695d10157(2)观察:3+23=2;8+612=2;6+59=2;10+715=2.通过
9、观察发现,它们的顶点数、边数、区域数之间的关系为:.【总结升华】所谓归纳,就是由特殊到一般,因此在归纳时要分析所给条件之间的变化规律,从而得到一般性的结论.举一反三:【变式1】观察下来等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第个式子是_.【答案】【变式2】设,计算的值,同时作出归纳推理,并用=40验证猜想结论是否正确.【解析】由此猜测,为任意正整数时,都是质数.当=40时,为合数,因此猜想的结论不成立.例2. 在三角形中有下面的性质:(1)三角形的两边之和大于第三边;(2)三角形的中位线等于第三边的一半,且平行于第三边;(3)三角形的三条内
10、角平分线交于一点,且这个点是三角形的内心;(4)三角形的面积,(为三角形的三边长,为三角形的内切圆半径)请类比写出四面体的有关性质【思路点拨】利用三角形的性质,通过观察四面体的结构,比较二者的内在联系,从而类比出四面体的相似命题,提出猜想【解析】(1) 四面体的三个面的面积之和大于第四个面的面积;(2) 四面体的中位面的面积等于第四个面面积的四分之一,且平行于第四个面;(3) 四面体的六个二面角的平分面交于一点,且这个点是四面体的内切球的球心;(4) 四面体的体积,(为四面体的四个面的面积,为四面体的内切球半径).【总结升华】1. 把平面几何的问题类比立体几何的问题,常常有如下规律:(1)平面
11、中的点类比为空间中的线;(2)平面中的线类比为空间中的面;(3)平面中的区域类比为空间中的空间区域;(4)平面中的面积类比成空间中的体积2. 培养学生面对陌生情景的问题时,能从运用知识点,方法体系的角度去思考分析问题的解题策略.举一反三:【变式1】在三棱锥中,且和底面所成角分别为,三侧面的面积分别为,类比三角形的正弦定理,给出空间情形的一个猜想。【答案】【变式2】如图,椭圆中心在坐标原点,F为左焦点,A,B是顶点,当BFAB时,此类椭圆被称为“黄金椭圆”,其离心率为类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )A. B. C. D. 【答案】A类型二:综合法与分析法例3已知,是正
12、实数,求证:.【证明】证法一:分析法要证,只要证即证,即证.显然成立,所以证法二:综合法(当且仅当a=b时取等号),所以【总结升华】综合法和分析法是直接证明中最基本的两种证明方法,在实际应用中,要注意选用合适的方法,选择的依据是:对思路清楚,方向明确的题目,可直接使用综合法;对于复杂的题目,常把分析法和综合法结合起来,先用分析法去转化结论,得到中间结论Q;再根据结构的特点去转化条件,得到中间结论P. 若PQ,则结论得证举一反三:【变式1】求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大【证明】分析法设圆和正方形的周长为,依题意,圆的面积为,正方形的面积为因此本题只需证明要证明上
13、式,只需证明,两边同乘以正数,得因此,只需证明,显然这成立.所以这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大【变式2】已知a,b,cR,求证:.【证明】综合法a2+b22ab ,2(a2+b2)a2+2ab+b2=(a+b)2 即,两边开方得.同理可得, ,三式相加得:.类型三:反证法例4. 设二次函数中的、均为奇数,求证:方程无整数根.【思路点拨】由于要求证的结论中含有否定词“无”,故可选用反证法.先作出假设,即对结论进行否定,以此为条件,运用演绎推理,导出一个与题设矛盾的结论.【证明】假设方程 有整数根,则成立,所以.因为为奇数,所以也为奇数,且与都必须为奇数.因为已知、为奇数,又为奇数,所以为偶数,这与为奇数矛盾,所以假设不成立,原命题成立.【总结升华】反证法适宜证明“存在性”、“唯一性”,带有“至少有一个”或“至多有一个”等字样的数学问题.举一反三:【高清课堂:推理与证明、数学归纳法407426 例5】【变式1】已知是整数,是偶数,求证:也是偶数【证明】假设不是偶数,即是奇数设,则是偶数,是奇数,这与已知是偶数矛盾由上述矛盾可知,一定是偶数【变式2】设函数在内都有,且恒成立,求证:对任意都有.【证明】假设“对任意都有”不成立,则,有成立,.又.这与矛盾,所以假设不成立,原命题成立.