《成层地基中单桩受扭弹塑性分析.docx》由会员分享,可在线阅读,更多相关《成层地基中单桩受扭弹塑性分析.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、成层地基中单桩受扭弹塑性分析 摘要:为了探讨成层地基中单桩的受扭性状,基于桩侧土双折线模型,以塑性区开展深度为变量,推导了桩侧土分别处于弹性和塑性状态时桩顶的扭矩扭转角曲线和桩身扭矩、扭转角分布曲线的递推计算方法,并编制出相应的计算程序,由此对比分析了单层与双层地基中桩身的受扭性能.最终,结合工程算例进行了应用,并完成了参数分析.结果表明:考虑桩侧土分别处于弹性和塑性状态所得结果更符合工程实际;桩顶扭矩T肯定时,桩顶扭转角随桩身材料剪切模量Gp和半径r0的增加而减小;r0对T-曲线影响显著,同等条件下r0提高一倍,桩顶抗扭承载力提高46倍;可对桩周上部土层进行处理来提高桩身抗扭性能,其有效处理
2、厚度为桩长的0.2倍. 关键词:桩基础;成层地基;扭矩荷载;荷载传递法;双折线模型 中图分类号:TU473.3 文献标识码:A Abstract: In order to discuss the torsional behavior of single pile in layered subsoil, various bearing states of the subsoil were considered, and the double broken line model was used to simulate the load transferring law along the pil
3、e shaft. The plastic zone developmental depth in the subsoil was chosen as an independent variable to derive the solutions for the torquetwist angle curve at the pile top and the torqueangle distribution curves along the pile shaft in layered subsoil. A recursive algorithm was presented to calculate
4、 the torque and the twist angle with the computer program worked out as well. Based on the solutions obtained, the torsional behavior of the pile shaft in the singlelayer and the doublelayer subsoil was analyzed respectively. Finally, an engineering project was used to verify the present method and
5、to carry out the parameter analysis. The result shows that the consideration of various elastic or plastic states of the subsoil will result in a more reasonable outcome, compared with engineering practice. Furthermore, for a constant torque T, the torsion angles at the pile top will decrease with t
6、he decrease of the shear modulus Gp and radius r0 of pile shaft. An obvious effect of r0 on the T curve was observed, in which the torsional bearing capacity may be increased 46 times if the value of r0 was doubled and other conditions remained unchanged. The upper soil layer may be treated to impro
7、ve the torsional performance with an advised effective treatment depth of 0.2 times the pile shaft length. Key words:pile foundation; layered subsoil; torque load; load transfer method; double broken line model 为满意我国基础建设发展及不断增加的资源需求,立交桥、海上钻井平台和风力发电塔等结构物不断出现于人们视野.这些结构物多采纳桩基础,且由于所处受力环境的特别性及不匀称侧向力作用等缘由
8、,导致其桩基承受较大扭矩作用.工程设计中若忽视这类扭矩荷载影响,可能导致基础及上部结构偏于担心全.事实上,就曾有因忽视风力引起的扭矩作用而导致桩基破坏的报道1.因此,探讨桩基受扭问题,特殊是扭矩与竖向力、弯矩及水平力的共同作用具有重要的意义2.但鉴于问题的困难性,探讨单桩受扭性能仍具有基础性意义. 对于单桩受扭问题的探讨,目前已取得一些成果.Poulos3和Randolph4基于弹性连续介质理论提出了求解单桩扭转刚度的解析方法,但这些探讨主要针对单层均质地基,不能应用于实际工程中常见的层状地基.Hache5和Chow6等虽考虑地基分层特性分别采纳桩身微段平衡法和离散元法分析了双层地基的单桩受扭
9、问题,然其解答也仅适用于桩侧土体的弹性阶段.Guo7-8等采纳桩身微段平衡法和剪切位移法,基于假定的桩侧土剪切模量和极限摩阻力分布形式导得单层与双层地基中桩侧土处于弹性和塑性阶段的解答,对于实际工程中的多层地基,该法仍旧无法推广.陈胜立等9-10采纳积分变换和传递矩阵方法求得成层土在内部环形荷载作用下的基本解后,再基于桩土位移协调条件提出了层状地基中单桩扭转变形的半解析方法,但该法仅假定桩侧土处于弹性阶段,且对于桩土接触面位移非协调的塑性阶段未给出解答. 为此,本文采纳桩身荷载传递双折线模型,基于平衡原理等导出桩侧土处于弹性阶段时桩顶扭矩T扭转角关系曲线、以及桩身扭矩与扭转角的分布解答.然后,
10、以桩侧土中塑性区开展深度为变量,探讨成层地基中桩侧土处于塑性状态时桩顶T曲线和桩身扭矩及扭转角计算方法,由此对比分析单层和双层地基中的单桩受扭性能.最终,结合工程算例进行应用,并通过参数分析探讨桩身受扭性能的主要影响参数及其影响规律,以期对桩基受扭问题获得进一步的相识. 2.3成层地基中桩身受扭分析计算步骤 综合以上解答,为计算成层地基中桩顶T曲线、桩身扭矩和扭转角沿深度的分布曲线,基于Mathcad编制了计算程序,其主要步骤如下: 1) 依据地层分布将桩身先初步划分成n个单元,确定每个桩段的几何力学参数及荷载传递模型参数. 2) 以塑性区开展深度la为变量,计算桩顶的T曲线和桩身扭矩扭转角分
11、布曲线.la=0时,取桩顶扭转角为弹性极限扭转角 u,按式递推计算弹塑性临界扭矩值. 3) 计算la0时即弹塑性阶段的桩顶T曲线、桩身扭矩和扭转角分布曲线:当la所对应的点位于某个桩段内时,则以该点为界将该桩段再细分成两个桩段,其余桩段划分不变,分别按式和式递推计算弹性区和塑性区的桩身扭矩和扭转角分布曲线.不断增加la进行循环计算,直至la=L时即可获得桩顶的T 曲线,由此可作为设计的依据. 3方法验证 为验证本文方法,分别将单层和双层地基中的单桩受扭弹性分析结果与已有方法进行了对比.至于塑性分析,将结合工程应用进行验证. 5 结论 为探讨桩身受扭性能,本文采纳双折线荷载传递模型,针对不同桩侧
12、土受力状态,分析了单层与成层地基中受扭单桩的承载性状,主要结论如下: 1) 分别建立出单层与成层地基中桩身扭转弹、塑性限制方程,并以桩侧土中塑性区开展深度为基本变量,导得了桩侧土处于弹性与塑性阶段时的桩顶、桩身的扭矩与扭转角计算公式,并基于Mathcad编制出相应的计算程序. 2) 通过与已有方法对单层与双层地基中桩身受扭弹性对比分析,验证了本文方法的可行性,且参数分析表明:桩顶扭矩T肯定时,桩顶扭转角随桩身剪切模量Gp和桩径r0的增加而减小,且r0对T曲线影响显著,相同条件下,r0提高一倍时桩顶可承受的扭矩可提高46倍. 3) 双层地基中上下两层土体的层厚比及剪切模量比Gs1/Gs2对桩身抗
13、扭性能影响较大,Gs1/Gs2值由0.25增至4.0时桩身抗扭实力提高约4倍.因此,工程中可对桩侧上部土层进行处理来提高桩身的抗扭性能,且有效处理厚度约为0.2倍桩长. 参考文献 1VICKERY B J. Wind effects on building and structurescritical unsolved problemsC/NAUDOSCHER E,ROCKWELL D.IAHR/IUTAM Practical Experiences with Flowinduced Vibrations Symposium. Karlsruhe: SpringerVerlag, 11019:
14、 823-828. 2陈仁朋,郑中,孔令刚,等. 水平及扭转荷载作用下群桩基础受力分析方法J. 岩土工程学报, 2022, 35:1463-1469. CHEN Renpeng, ZHENG Zhong, KONG Linggang, et al. Analysis method for pile groups subjected to lateral and torsional loads J. Chinese Journal of Geotechnical Engineering, 2022, 35: 1463-1469. 3POULOS H G. Torsional response o
15、f piles J. Journal of Geotechnical Engineering Division, ASCE, 11015, 101: 1019-1035. 4RANDOLPH M F. Piles subjected to torsion J. Journal of Geotechnical Engineering Division, ASCE, 11011, 107: 1095-1111. 5HACHE R A G, VALSANGKAR A J. Torsional resistance of single pile in layered soil J. Journal o
16、f Geotechnical Engineering, ASCE, 11018, 114: 216-220. 6CHOW Y K. Torsional response of piles in nonhomogeneous soil J. Journal of Geotechnical Engineering, ASCE, 11015, 111: 942-947. 7GUO W D, RANDOLPH M F. Torsional piles in nonhomogeneous media J. Computers and Geotechnics, 11016, 19: 265-287. 8G
17、UO W D, CHOW Y K, RANDOLPH M F. Torsional piles in twolayered nonhomogeneous soil J. International Journal of Geomechanics, ASCE, 2022, 7: 410-412. 9陈胜立,张利民. 层状地基中单桩的扭转变形分析J. 岩土工程学报, 2022, 27: 531-535. CHEN Shengli, ZHANG Limin. Torsional response of single pile embedded in layered ground J. Chinese
18、 Journal of Geotechnical Engineering, 2022, 27: 531-535. 10陈胜立,寿汉平. 传递矩阵法分析层状地基中桩的扭转变形J. 岩土力学,2004, 25: 178-186. CHEN Shengli, SHOU Hanping. Analysis of torsional response of a single pile embedded in layered soil with transfer matrix method J. Rock and Soil Mechanics, 2004, 25: 178-186. 11SEED H B,
19、 REESE L C. The action of soft clay along friction piles J. Proceedings of the American Society of Civil Engineers, 1955,122: 112-118. 12王奎华,吕述晖,吴文兵,等. 层状地基中基于虚土桩模型的单桩沉降计算方法J. 工程力学, 2022,30:75-83. WANG Kuihua, LV Shuhui, WU Wenbin, et al. A new calculation method for the settlement of single pile ba
20、sed on virtual soilpile model in layered soils J. Engineering Mechanics, 2022, 30: 75-83. 13赵明华,贺炜,邹新军. 计入桩侧摩阻力非线性特性的基桩承载力分析方法J. 湖南高校学报:自然科学版, 2022,34:5-9. ZHAO Minghua, HE Wei, ZOU Xinjun. Calculation method for the bearing capacity of pile by considering the nonlinear character of side resistance
21、J. Journal of Hunan University :Natural Sciences, 2022, 34: 5-9. 14赵明华,何俊翘,曹文贵,等. 基桩竖向荷载传递模型及承载力探讨J. 湖南高校学报:自然科学版,2022, 32 :37-42. ZHAO Minghua, HE Junqiao, CAO Wengui, at al. Study on the load transfer model and the bearing capacity of vertically loaded pilesJ. Journal of Hunan University :Natural
22、Sciences, 2022,32:37-42. 15王奎华,罗永健,吴文兵,等. 层状地基中考虑桩端应力扩散的单桩沉降计算J. 浙江高校学报:工学版, 2022, 47: 473-479. WANG Kuihua, LUO Yongjian, WU Wenbin, et al. Calculation method for settlement of single pile considering stress dispersion of pile and soilJ. Journal of Zhejiang University :Engineering Science, 2022, 47
23、: 473-479. 16GEORGIADIS M. Interaction between torsional and axial pile responseJ. Numerical and Analytical Methods in Geomechanics, 11017, 11: 645-650. 17GEORGIADIS M, SAFLEKOU S. Piles under axial and torsion loads J. Computers and Geotechnics, 11010, 9: 291-305. 18洪毓康,陈强华. 钻孔灌注桩的荷载传递性能J. 岩土工程学报,
24、11015, 7: 22-24. HONG Yukang, CHEN Qianghua. Load transfer performance of bored pile J. Chinese Journal of Geotechnical Engineering, 11015, 7: 22-24. 19赵明华,张洋,张永杰. 考虑荷载传递非线性特性的基桩竖向承载力计算J. 马路交通科技,2022,28:73-76. 第10页 共10页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页