函数的初步认识省公开课一等奖新名师优质课比赛一等奖课件.pptx

上传人:胜**** 文档编号:97803268 上传时间:2024-07-07 格式:PPTX 页数:27 大小:1.36MB
返回 下载 相关 举报
函数的初步认识省公开课一等奖新名师优质课比赛一等奖课件.pptx_第1页
第1页 / 共27页
函数的初步认识省公开课一等奖新名师优质课比赛一等奖课件.pptx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《函数的初步认识省公开课一等奖新名师优质课比赛一等奖课件.pptx》由会员分享,可在线阅读,更多相关《函数的初步认识省公开课一等奖新名师优质课比赛一等奖课件.pptx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第5章 代数式与函数初步认识第1页2024/7/52用用字字母母表表示示数数实际实际问题情境问题情境代数式代数式代数代数式值式值 常量常量 变量变量函数值函数值 函函 数数第2页2024/7/53用字母表示数,能简明地把用字母表示数,能简明地把_和和_表表示出来,从而为叙述和研究问题带来方便示出来,从而为叙述和研究问题带来方便数量关系数量关系数数知识点一:用字母表示数知识点一:用字母表示数(1)(1)字母与字母字母与字母相乘时应写成相乘时应写成 形式形式;(2)(2)数字与字母数字与字母相乘时相乘时 因数因数写写在在前面前面,并写成并写成 形式形式;(3)(3)表示二者相除时应把表示二者相除时

2、应把除号写成除号写成(4)(4)带单位题目,列出式子假如是加减关系,要用括带单位题目,列出式子假如是加减关系,要用括号括起来,比如号括起来,比如(2a+3b2a+3b)元。元。注意:注意:省略乘号省略乘号数字数字省略乘号省略乘号分数线分数线;第3页2024/7/542n5小试身手:小试身手:一辆汽车有个座位,空车出发第一站上一辆汽车有个座位,空车出发第一站上2位乘客,第二站上位乘客,第二站上4位乘客,第三站上位乘客,第三站上6位乘客,位乘客,若依此规律下去,第若依此规律下去,第 站上站上_位乘客;假如位乘客;假如中途没人下车,中途没人下车,_站以后,车内坐满乘客站以后,车内坐满乘客第4页202

3、4/7/551.举例说明什么是代数式,举例说明什么是代数式,_.注意:注意:单独一个数或字母也是代数式单独一个数或字母也是代数式.2.列代数式关键是搞清运算次序,正确了解数量关列代数式关键是搞清运算次序,正确了解数量关系系3.用用_代替换数式里字母,按照代替换数式里字母,按照 ssssssssssssssssssssss运算,计算运算,计算出结果,叫做代数式值出结果,叫做代数式值.代数式要求运算次序代数式要求运算次序数数(1)(1)当数字因数是当数字因数是带分数带分数时应时应化化成成 ;(2)(2)当当系数系数是是1 1或或-1-1时时1 1应应 ;知识点二:代数式知识点二:代数式注意:注意:

4、假分数假分数省略不省略不 写写第5页2024/7/56小试牛刀小试牛刀:1.三个连续偶数中,是最小一个,则这三个三个连续偶数中,是最小一个,则这三个连续偶数和为连续偶数和为_和和”用代数式能够表示为用代数式能够表示为:()2.与与A.B.C.D.(x+y)+yx+yx+yX+3若代数式若代数式2x2+3x+7值是值是8,那么代数式,那么代数式 4x2+6x+9值是(值是()A.2 B.17 C.11 D.74.某产品价格是某产品价格是 p 元,其中成本比其价元,其中成本比其价格少格少10%,则此产品成本是,则此产品成本是 。3 +6DA0.9p第6页2024/7/571.在某一改变过程中,在某

5、一改变过程中,_量做常量,量做常量,_量叫做变量量叫做变量.2.在同一个改变中,有在同一个改变中,有两个变量两个变量x与与y,变量变量y取值是由变量取值是由变量x取值取值_确定,确定,我们把我们把y叫做叫做x函数,其中函数,其中x叫做叫做_.3.举例说明什么叫函数值举例说明什么叫函数值.改变改变保持不变保持不变唯一唯一自变量自变量知识点三:知识点三:常量、变量与函数常量、变量与函数第7页2024/7/58【知识回顾知识回顾】1.正方形周长c与边长a关系式为_,其中常量是_,变量是_.2.假如用r表示圆半径,S表示圆面积,则S与r之间满足以下关系:S=_.利用这个关系式,试求出半径1cm、1.5

6、cm、2cm、2.6cm、3.2cm时圆面积,并将结果填入下表:半径(cm)11.522.63.2圆面积(cm2)由此能够看出,圆半径越大,面积就_.第8页2024/7/59 新华社神六消息新华社神六消息:神舟六号飞船在轨道上飞行速度每秒7.8公里左右,若设飞船飞行时间为t秒,飞行旅程为m公里。请填写下表:飞行时间t(秒)1 5101520旅程m(公里)7.87.839397878117117156156第9页2024/7/510(1 1)在此次飞行过程中,)在此次飞行过程中,当初间确定时,旅程能确当初间确定时,旅程能确定吗?定吗?(2)(2)你能用含你能用含t t代数式来表代数式来表示示mm

7、值吗值吗?思索:思索:m=7.8m=7.8t第10页2024/7/511 一、创设情境,导入问题一、创设情境,导入问题 1、在刚才结束16届亚洲运动会上,刘翔跑出了12秒30好成绩,在这次比赛中他平均速度到达8.5米/秒.下面我们来了解在本场比赛中他在每一时刻所跑过旅程。所跑时间(秒)12345678x所跑过旅程(米)8.51725.542.55159.5Y1、在上述问题中,哪些是常量?哪些是变量?2、给定一个x值,你能求出对应y值吗?计算当x分别为4、8时,对应旅程y是多少?3、变量之间改变关系有什么共同点吗?第11页2024/7/512 2、在跳远比赛中,依据经验,、在跳远比赛中,依据经验

8、,跳远距离跳远距离 (是助跑速是助跑速度,度,0 10.5米米/秒),其中变秒),其中变量量 伴随哪一个量改变而改变?伴随哪一个量改变而改变?一、创设情境,导入问题一、创设情境,导入问题第12页2024/7/513 1.小明哥哥是一名大学生小明哥哥是一名大学生,他利用暑假去一家企业打他利用暑假去一家企业打工工,酬劳酬劳16元元/时计算时计算,设小明哥哥这个月工作时间为设小明哥哥这个月工作时间为 t 时时,应得酬劳为应得酬劳为 m 元元.怎样用关于怎样用关于 t 代数式来表示代数式来表示m?填写下表填写下表:表表7-1 在以下问题中在以下问题中,哪些是变量哪些是变量?哪些是常量哪些是常量?工作时

9、间工作时间t(时时)15101520t酬劳m(元)16t8032024016016 m=16 t二、自主探究,合作交流二、自主探究,合作交流 第13页2024/7/514 2.跳远运动员按一定起跳姿势跳远运动员按一定起跳姿势,其跳远距离其跳远距离(米米)与助跑与助跑速度速度(米米/秒秒)相关相关.依据经验依据经验,跳远距离跳远距离 s=0.085v2(0v10.5).填写下表填写下表:助跑速度助跑速度v(米米/秒秒)7.588.5跳远距离给定一个给定一个v值,你能求出对应值,你能求出对应s值吗值吗?4.786.145.44二、自主探究,合作交流二、自主探究,合作交流 在以下问题中在以下问题中,

10、哪些是变量哪些是变量?哪些是常量哪些是常量?第14页2024/7/515 上面各问题中两个变量上面各问题中两个变量(t 与与 m,s 与与 v)之间关之间关系有什么共同点吗系有什么共同点吗?m=16 ts=0.085v2三、尝试探索,揭示本质三、尝试探索,揭示本质 普通地普通地,在某个改变过程中在某个改变过程中,设有两个变量设有两个变量 x,y,假如对于假如对于 x 每一个确定值每一个确定值,y 都有唯一确定值都有唯一确定值,那那么就说么就说 y 是是 x 函数函数函数函数,x 叫做叫做自变量自变量自变量自变量.m是是t函数,函数,t是是自变量。自变量。s是是v函数,函数,v是是自变量。自变量

11、。函数解析式函数解析式第15页2024/7/516对于函数对于函数m=7.8t,m=7.8t,当当t=5t=5时,能时,能求得求得mm值吗?怎么求?值吗?怎么求?函数值:函数值:在这里,我们把在这里,我们把m=39m=39叫做当自变量叫做当自变量t=5 t=5 时时函数值函数值。把它代入函数解析式,得把它代入函数解析式,得m=7.8t=7.85=39m=7.8t=7.85=39请你思索请你思索函数值概念函数值概念 第16页2024/7/5171、如图,图象表示骑车时热量消耗、如图,图象表示骑车时热量消耗 W(焦焦)与身体质量与身体质量 x(千克千克)之间关系。之间关系。身体质量身体质量 x(千

12、克千克)活活动动时时消消耗耗热热量量W(焦焦)当当当当x=50 x=50 x=50 x=50时,函数值为时,函数值为时,函数值为时,函数值为_。399课堂练习课堂练习第17页2024/7/5186.312.217.123.328.028.624.320.215.49.35.13.8121110987654321月份月份m平均气温平均气温T(0C)表表7-2 2、如表如表7-2表示是一年内某城市月份与平均气温表示是一年内某城市月份与平均气温函数关系函数关系.当当m=2时,函数值时,函数值T=_;当当m=10时,函数值时,函数值T=_。5.117.1课堂练习课堂练习第18页2024/7/519以下

13、变量之间关系不是函数关系是(以下变量之间关系不是函数关系是(以下变量之间关系不是函数关系是(以下变量之间关系不是函数关系是()A.A.矩形一条边长是矩形一条边长是矩形一条边长是矩形一条边长是6 cm6 cm,它面积,它面积,它面积,它面积S S cmcm与另一边长与另一边长与另一边长与另一边长x x cmcm关系关系关系关系B.B.正方形面积与周长关系正方形面积与周长关系正方形面积与周长关系正方形面积与周长关系C.C.圆面积与周长关系圆面积与周长关系圆面积与周长关系圆面积与周长关系D.D.某图形面积与它所在平面位置关系某图形面积与它所在平面位置关系某图形面积与它所在平面位置关系某图形面积与它所

14、在平面位置关系普通地,假如在一个普通地,假如在一个普通地,假如在一个普通地,假如在一个_中,有两个中,有两个中,有两个中,有两个_,比如比如比如比如x x和和和和y y,对于,对于,对于,对于x x每每每每个值,个值,个值,个值,y y都有都有都有都有_与之对应,我们就说与之对应,我们就说与之对应,我们就说与之对应,我们就说x x是是是是_,y y是是是是_,此时也称,此时也称,此时也称,此时也称y y是是是是x x_ 点拨:点拨:点拨:点拨:1.1.必须有两个变量必须有两个变量必须有两个变量必须有两个变量 2.2.自变量每取一个值,函数都有唯一值对应。自变量每取一个值,函数都有唯一值对应。自

15、变量每取一个值,函数都有唯一值对应。自变量每取一个值,函数都有唯一值对应。经过以上练习,你一定知道函数和自变量了?和同桌交流一下吧,经过以上练习,你一定知道函数和自变量了?和同桌交流一下吧,经过以上练习,你一定知道函数和自变量了?和同桌交流一下吧,经过以上练习,你一定知道函数和自变量了?和同桌交流一下吧,找出它们之间联络与区分找出它们之间联络与区分找出它们之间联络与区分找出它们之间联络与区分.效果检测效果检测第19页2024/7/520小试牛刀:小试牛刀:1.某人要在要求时间内加工某人要在要求时间内加工100个零件,则工作效率个零件,则工作效率与时间与时间 之间关系中,以下说法正确是(之间关系

16、中,以下说法正确是().A.数数100和和,都是变量,都是变量 B.数数100和和都是常量都是常量 C.和和 是变量是变量D.数数100和和 都是常量都是常量 2.汽车离开甲站汽车离开甲站10千米后,以千米后,以60千米千米/时速度匀速前进了时速度匀速前进了小时,则汽车离开甲站所走旅程小时,则汽车离开甲站所走旅程(千米)与时间(千米)与时间(小时)之间关系式是(小时)之间关系式是().3.以下关于以下关于x、y 关系式中:关系式中:5x-2y=1;x-y2=4.其中表示其中表示y是是x函数是函数是()A.B.C.D.y=A.=10+60 B.=60 C.=60 /10 D.=10/60Acc第

17、20页2024/7/521例:用总长为例:用总长为例:用总长为例:用总长为60m60m篱笆围成矩形场地,求矩形面积篱笆围成矩形场地,求矩形面积篱笆围成矩形场地,求矩形面积篱笆围成矩形场地,求矩形面积s s(m(m2 2)与一边长与一边长与一边长与一边长l l(m)(m)之间关系式。并指出式中常量与变量,并之间关系式。并指出式中常量与变量,并之间关系式。并指出式中常量与变量,并之间关系式。并指出式中常量与变量,并判断是否是函数关系式,若是,指出判断是否是函数关系式,若是,指出判断是否是函数关系式,若是,指出判断是否是函数关系式,若是,指出 自变量与函数。自变量与函数。自变量与函数。自变量与函数。

18、说明:处理这类问题,关键是了解常量与变量,自变量说明:处理这类问题,关键是了解常量与变量,自变量说明:处理这类问题,关键是了解常量与变量,自变量说明:处理这类问题,关键是了解常量与变量,自变量与函数意义。与函数意义。与函数意义。与函数意义。典例剖析第21页2024/7/5221.1.每种商品单价是每只每种商品单价是每只每种商品单价是每只每种商品单价是每只5 5元,它销售额元,它销售额元,它销售额元,它销售额y y(元)与所授商品(元)与所授商品(元)与所授商品(元)与所授商品数量数量数量数量x x(只)之间关系式是(只)之间关系式是(只)之间关系式是(只)之间关系式是(),其中(),其中(),

19、其中(),其中()是()是()是()是()函数。)函数。)函数。)函数。2.2.如图是某物体抛射曲线图,其中如图是某物体抛射曲线图,其中如图是某物体抛射曲线图,其中如图是某物体抛射曲线图,其中s s表示物体与抛射点之间表示物体与抛射点之间表示物体与抛射点之间表示物体与抛射点之间水平距离,水平距离,水平距离,水平距离,h h表示物体高度该图中变量是()与()表示物体高度该图中变量是()与()表示物体高度该图中变量是()与()表示物体高度该图中变量是()与(),其中()是自变量()函数,其中()是自变量()函数,其中()是自变量()函数,其中()是自变量()函数3.3.书本练习题书本练习题书本练习

20、题书本练习题3 3题。题。题。题。对应训练:第22页2024/7/523例1.变式题:观察下列图,依据表格中问题回答以下问题:梯形个数n12345图形周长l581114171.写出l与n关系式,在这个关系式中,哪个量是常量,哪个量是变量?2.求n=11时图形周长.第23页2024/7/524三、课内探究:三、课内探究:例例1 1列代数式列代数式:两数积与这两数和积两数积与这两数和积这表告诉我们哪些信息?这表告诉我们哪些信息?这张表是怎样刻画波长和频率之间改变规律,这张表是怎样刻画波长和频率之间改变规律,用一个表示式表示出来是用一个表示式表示出来是_例例2 2收音机上刻度盘波长和频率分别是用米(

21、收音机上刻度盘波长和频率分别是用米(m m)和赫兹(和赫兹(KHzKHz)为单位标刻,下表中是一些对应数)为单位标刻,下表中是一些对应数:波长波长l(m)30050060010001500频率频率f(KHz)1000600500300200第24页2024/7/525 1.书本练习题1,2题 2.习题5.5B组第2题。对应训练:第25页2024/7/526学习小结学习小结 1.你学到了哪些知识?要注意你学到了哪些知识?要注意什么问题?什么问题?2.在学习过程在学习过程 中你有什么体中你有什么体会?会?第26页2024/7/5271.举三个日常生活中碰到函数关系例子答:(1)_ _;(2)_;(3)_2.函数y=-3x+7中,当x2时,函数值为 ()A3 B2 C1 D03.写出以下函数关系式,指出自变量与函数.一辆汽车从南京开出,行驶在去上海高速公路上,速度为120kmh,南京至上海约270km,则该汽车离上海旅程s与行驶时间t之间函数关系;4.印刷一张矩形张贴广告(如图175),它印刷面积为,上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下长是x dm,四面空白面积为S,求S与x函数关系式,并求出当x8dm时,S值 课堂检测站第27页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁