《函数的奇偶性及周期性 .doc》由会员分享,可在线阅读,更多相关《函数的奇偶性及周期性 .doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第六节 函数的奇偶性及周期性一、函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是奇函数关于原点对称二、周期性1周期函数对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期2最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期课前检测1下列函数为偶函数的是()Aysin
2、xByx3Cyex Dyln 解析:选D四个选项中的函数的定义域都是R.ysin x为奇函数幂函数yx3也为奇函数指数函数yex为非奇非偶函数令f(x)ln ,得f(x)ln ln f(x)所以yln为偶函数2已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab 的值是()A B.C. D解析:选Bf(x)ax2bx是定义在a1,2a上的偶函数,a12a0,a.又f(x)f(x),b0,ab.3已知定义在R上的奇函数f(x),满足f(x4)f(x),则f(8)的值为()A1 B0C1 D2解析:选Bf(x)为奇函数且f(x4)f(x),f(0)0,T4.f(8)f(0)0.4若函数f(
3、x)x2|xa|为偶函数,则实数a_.解析:法一:f(x)f(x)对于xR恒成立,|xa|xa|对于xR恒成立,两边平方整理得ax0,对于xR恒成立,故a0.法二:由f(1)f(1),得|a1|a1|,故a0.答案:05设函数f(x)x3cos x1.若f(a)11,则f(a)_.解析:观察可知,yx3cos x为奇函数,且f(a)a3cos a111,故a3cos a10.则f(a)a3cos a11019.答案:9 1.奇、偶函数的有关性质:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件;(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反之亦然;(3)若奇函数f(x
4、)在x0处有定义,则f(0)0;(4)利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y轴对称可知,偶函数在原点两侧的对称区间上的单调性相反2若函数满足f(xT)f(x),由函数周期性的定义可知T是函数的一个周期;应注意nT(nZ且n0)也是函数的周期一、函数奇偶性的判断例1设Q为有理数集,函数f(x)g(x),则函数h(x)f(x)g(x)()A是奇函数但不是偶函数B是偶函数但不是奇函数C既是奇函数也是偶函数D既不是偶函数也不是奇函数自主解答当xQ时,xQ,f(x)f(x)1;当xRQ时,xRQ,f(x)f(x)1.综上,对任意xR,都有f(x
5、)f(x),故函数f(x)为偶函数g(x)g(x),函数g(x)为奇函数h(x)f(x)g(x)f(x)g(x)f(x)g(x)h(x),函数h(x)f(x)g(x)是奇函数h(1)f(1)g(1),h(1)f(1)g(1)1,h(1)h(1),函数h(x)不是偶函数答案A由题悟法利用定义判断函数奇偶性的方法(1)首先求函数的定义域,定义域关于原点对称是函数为奇函数或偶函数的必要条件;(2)如果函数的定义域关于原点对称,可进一步判断f(x)f(x)或f(x)f(x)是否对定义域内的每一个x恒成立(恒成立要给予证明,否则要举出反例)注意判断分段函数的奇偶性应分段分别证明f(x)与f(x)的关系,
6、只有对各段上的x都满足相同的关系时,才能判断其奇偶性以题试法1判断下列函数的奇偶性(1)f(x);(2)f(x)3x3x;(3)f(x);(4)f(x)解:(1)由得x1,f(x)的定义域为1,1又f(1)f(1)0,f(1)f(1)0,即f(x)f(x)f(x)既是奇函数又是偶函数(2)f(x)的定义域为R,f(x)3x3x(3x3x)f(x),所以f(x)为奇函数(3)由得2x2且x0.f(x)的定义域为2,0)(0,2,f(x),f(x)f(x),f(x)是奇函数(4)f(x)的定义域为R,关于原点对称,当x0时,f(x)(x)22(x22)f(x);当x0的解集为()A(2,0)(2,
7、)B(,2)(0,2)C(,2)(2,) D(2,0)(0,2)自主解答(1)yf(x)x2是奇函数,且x1时,y2,当x1时,y2,即f(1)(1)22,得f(1)3,所以g(1)f(1)21.(2)f(x)为偶函数,0.xf(x)0.或又f(2)f(2)0,f(x)在(0,)上为减函数,故x(0,2)或x(,2)答案(1)1(2)B本例(2)的条件不变,若n2且nN*,试比较f(n),f(1n),f(n1),f(n1)的大小解:f(x)为偶函数,所以f(n)f(n),f(1n)f(n1)又函数yf(x)在(0,)为减函数,且0n1nn1,f(n1)f(n)f(n1)f(n1)f(n)f(2
8、a),则实数a的取值范围是_解析:(1)当x0,所以f(x)x2x,f(x)ax2bx,而f(x)f(x),即x2xax2bx,所以a1,b1,故ab0.(2)因为f(x)x22x在0,)上是增函数,又因为f(x)是R上的奇函数,所以函数f(x)是R上的增函数,要使f(3a2)f(2a),只需3a22a,解得3a0时,x0,则h(x)x2x(x2x)h(x),当x0,则h(x)x2x(x2x)h(x)x0时,h(0)0,故h(x)为奇函数5已知函数f(x)为定义在R上的奇函数,当x0时,f(x)2x2xm(m为常数),则f(1)的值为()A3 B1C1 D3解析:选A函数f(x)为定义在R上的
9、奇函数,则f(0)0,即f(0)20m0,解得m1.则f(x)2x2x1,f(1)212113,f(1)f(1)3.6若函数f(x)为奇函数,则a()A. B. C. D1解析:选Af(x)是奇函数,f(1)f(1),a13(1a),解得a.7已知f(x)是偶函数,当x0时,f(x)_.解析:x0,x0时,f(x)x2x.答案:x2x8.定义在2,2上的奇函数f(x)在(0,2上的图象如图所示,则不等式f(x)x的解集为_解析:依题意,画出yf(x)与yx的图象,如图所示,注意到yf(x)的图象与直线yx的交点坐标是和,结合图象可知,f(x)x的解集为.答案:9已知函数f(x)是定义在R上的奇
10、函数,其最小正周期为3,且x时,f(x)log2(3x1),则f(2 011)_.解析:f(2 011)f(36701)f(1)f(1)log2(31)2.答案:210已知函数f(x)x2(x0,常数aR)(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)2,试判断f(x)在2,)上的单调性解:(1)当a0时,f(x)x2,f(x)f(x),函数是偶函数当a0时,f(x)x2(x0,常数aR),取x1,得f(1)f(1)20;f(1)f(1)2a0,即f(1)f(1),f(1)f(1)故函数f(x)既不是奇函数也不是偶函数(2)若f(1)2,即1a2,解得a1,这时f(x)x2.任取x1
11、,x22,),且x1x2,则f(x1)f(x2)(x1x2)(x1x2)(x1x2).由于x12,x22,且x1x2.故x1x2,所以f(x1)f(x2),故f(x)在2,)上是单调递增函数11已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围解:(1)设x0,所以f(x)(x)22(x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)要使f(x)在1,a2上单调递增,结合f(x)的图象知所以1a3,故实数a的取值范围是(1,312已知函数f(x)是定义在R上的奇函数,且它的图象
12、关于直线x1对称(1)求证:f(x)是周期为4的周期函数;(2)若f(x)(0x1),求x5,4时,函数f(x)的解析式解:(1)证明:由函数f(x)的图象关于直线x1对称,得f(x1)f(1x),即有f(x)f(x2)又函数f(x)是定义在R上的奇函数,故有f(x)f(x)故f(x2)f(x)从而f(x4)f(x2)f(x),即f(x)是周期为4的周期函数(2)由函数f(x)是定义在R上的奇函数,有f(0)0.x1,0)时,x(0,1,f(x)f(x),又f(0)0,故x1,0时, f(x).x5,4,x41,0,f(x)f(x4).从而,x5,4时,函数f(x).课后练习1设f(x)是奇函
13、数,且在(0,)内是增函数,又f(3)0,则xf(x)0的解集是()Ax|3x3Bx|x3,或0x3Cx|x3Dx|3x0,或0x3解析:选D由xf(x)0,得或而f(3)0,f(3)0,即或所以xf(x)0的解集是x|3x0,或0x32设f(x)是定义在R上且周期为2的函数,在区间1,1上,f(x)其中a,bR.若ff,则a3b的值为_解析:因为f(x)是定义在R上且周期为2的函数,所以ff,且f(1)f(1),故ff,从而a1,3a2b2.由f(1)f(1),得a1,故b2a.由得a2,b4,从而a3b10.答案:103已知函数f(x)的定义域是(0,),且满足f(xy)f(x)f(y),
14、f1,如果对于0xf(y),(1)求f(1);(2)解不等式f(x)f(3x)2.解:(1)令xy1,则f(1)f(1)f(1),f(1)0.(2)f(x)f(3x)2f,f(x)ff(3x)f0f(1),fff(1),ff(1),则解得1xg(0)g(1)答案:f(1)g(0)g(1)2关于yf(x),给出下列五个命题:若f(1x)f(1x),则yf(x)是周期函数;若f(1x)f(1x),则yf(x)为奇函数;若函数yf(x1)的图象关于x1对称,则yf(x)为偶函数;函数yf(1x)与函数yf(1x)的图象关于直线x1对称;若f(1x)f(1x),则yf(x)的图象关于点(1,0)对称填
15、写所有正确命题的序号_解析:由f(1x)f(1x)可知,函数周期为2,正确;由f(1x)f(1x)可知,yf(x)的对称中心为(1,0),错;yf(x1)向左平移1个单位得yf(x),故yf(x)关于y轴对称,正确;两个函数对称时,令1x1x得x0,故应关于y轴对称,错;由f(1x)f(1x)得yf(x)关于x1对称,错,故正确的应是.答案:3已知f(x)是偶函数,且f(x)在0,)上是增函数,如果f(ax1)f(x2)在x上恒成立,求实数a的取值范围解:由于f(x)为偶函数,且在0,)上为增函数,则在(,0上为减函数,由f(ax1)f(x2),则|ax1|x2|,又x,故|x2|2x,即x2ax12x.故x3ax1x,1a1,在上恒成立由于min0,max2,故2a0.