北京高考题导数 .doc

上传人:yy****2 文档编号:97488908 上传时间:2024-06-17 格式:DOC 页数:11 大小:561.50KB
返回 下载 相关 举报
北京高考题导数 .doc_第1页
第1页 / 共11页
北京高考题导数 .doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《北京高考题导数 .doc》由会员分享,可在线阅读,更多相关《北京高考题导数 .doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、函数北京高考题二导数1.(2011年文科18)已知函数,(I)求的单调区间;(II)求在区间上的最小值2.(2012年文科18)函数,()若曲线与曲线在它们的交点处具有公共切线,求的值;()当,时,若函数在区间上的最大值为,求的取值范围3.(2012年理科18)已知函数(),.(1)若曲线与曲线在它们的交点(1,)处具有公共切线,求的值;(2)当时,求函数的单调区间,并求其在区间上的最大值.4.(2013年文科18)已知函数f(x)x2xsin xcos x.(1)若曲线yf(x)在点(a,f(a)处与直线yb相切,求a与b的值;(2)若曲线yf(x)与直线yb有两个不同交点,求b的取值范围5

2、.(2013年理科18)设L为曲线C:y在点(1,0)处的切线(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方6.(2014年文科20.)已知函数.(1)求在区间上的最大值;(2)若过点存在3条直线与曲线相切,求t的取值范围;(3)问过点分别存在几条直线与曲线相切?(只需写出结论)7(2014年理科18.)已知函数,(1) 求证:;()若在上恒成立,求的最大值与的最小值1.(2011年文科18)解:(I),令;所以在上递减,在上递增;(II)当时,函数在区间上递增,所以;当即时,由(I)知,函数在区间上递减,上递增,所以;当时,函数在区间上递减,所以。2.(2012年文

3、科18)解:(),因为曲线与曲线在它们的交点处具有公共切线,所以,且即 ,且解得 ,()记当,时,令,得,与在上的情况如下:由此可知:当时,函数在区间上的最大值为;当时,函数在区间上的最大值小于因此,的取值范围是3.(2012年文科18)解:(1)由为公共切点可得:,则,则,又,即,代入式可得:(2),设则,令,解得:,;,原函数在单调递增,在单调递减,在上单调递增若,即时,最大值为;若,即时,最大值为若时,即时,最大值为综上所述:当时,最大值为;当时,最大值为已知4.(2012年理科18)18解:由f(x)x2xsin xcos x,得f(x)x(2cos x)(1)因为曲线yf(x)在点(

4、a,f(a)处与直线yb相切,所以f(a)a(2cos a)0,bf(a)解得a0,bf(0)1.(2)令f (x)0,得x0.f(x)与f(x)的情况如下:x(,0)0(0,)f(x)0f(x)1所以函数f(x)在区间(,0)上单调递减,在区间(0,)上单调递增,f(0)1是f(x)的最小值当b1时,曲线yf(x)与直线yb最多只有一个交点;当b1时,f(2b)f(2b)4b22b14b2b1b,f(0)11时,曲线yf(x)与直线yb有且仅有两个不同交点综上可知,如果曲线yf(x)与直线yb有两个不同交点,那么b的取值范围是(1,)5.(2013年理科18)设L为曲线C:y在点(1,0)处

5、的切线(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方18解:(1)设f(x),则f(x).所以f(1)1. 所以L的方程为yx1.(2)令g(x)x1f(x),则除切点之外,曲线C在直线L的下方等价于g(x)0(x0,x1) g(x)满足g(1)0,且g(x)1f(x).当0x1时,x210,ln x0,所以g(x)1时,x210,ln x0,所以g(x)0,故g(x)单调递增所以g(x)g(1)0(x0,x1)所以除切点之外,曲线C在直线L的下方7解:(1)证明:,即在上单调递增,在上的最大值为,所以(2)一方面令,则,由(1)可知,故在上单调递减,从而,故,所以令

6、,则,当时,故在上单调递减,从而,所以恒成立当时,在有唯一解,且,故在上单调递增,从而,即与恒成立矛盾,综上,故解答:解:()由f(x)=2x33x得f(x)=6x23,令f(x)=0得,x=或x=,f(2)=10,f()=,f()=,f(1)=1,f(x)在区间2,1上的最大值为()设过点p(1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=23x0,且切线斜率为k=63,切线方程为yy0=(63)(xx0),ty0=(63)(1x0),即46+t+3=0,设g(x)=4x36x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零

7、点”g(x)=12x212x=12x(x1),g(x)与g(x)变化情况如下: x(,0) 0 (0,1) 1(1,+) g(x)+ 0 0+ g(x) t+3 t+1g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值当g(0)=t+30,即t3时,g(x)在区间(,1和(1,+)上分别至多有一个零点,故g(x)至多有2个零点当g(1)=t+10,即t1时,g(x)在区间(,0和(0,+)上分别至多有一个零点,故g(x)至多有2个零点当g(0)0且g(1)0,即3t1时,g(1)=t70,g(2)=t+110,g(x)分别在区间1,0),0,1)和1,2)上恰有1个零点,由于g(x)在区间(,0)和1,+)上单调,故g(x)分别在区间(,0)和1,+)上恰有1个零点综上所述,当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(3,1)()过点A(1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁