三角函数定义及其三角函数公式 .doc

上传人:yy****2 文档编号:97456893 上传时间:2024-06-13 格式:DOC 页数:11 大小:786.50KB
返回 下载 相关 举报
三角函数定义及其三角函数公式 .doc_第1页
第1页 / 共11页
三角函数定义及其三角函数公式 .doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《三角函数定义及其三角函数公式 .doc》由会员分享,可在线阅读,更多相关《三角函数定义及其三角函数公式 .doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 三角函数定义及其三角函数公式汇总1、勾股定理:直角三角形两直角边、的平方和等于斜边的平方。 2、如下图,在RtABC中,C为直角,则A的锐角三角函数为(A可换成B):定 义表达式取值范围关 系正弦(A为锐角)余弦(A为锐角)正切(A为锐角) (倒数)余切(A为锐角) 对边邻边斜边ACB3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值sin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsin 6、正弦、余弦

2、的增减性: 当090时,sin随的增大而增大,cos随的增大而减小。 7、正切、余切的增减性: 当090时,tan随的增大而增大,cot随的增大而减小。1、解直角三角形的定义:已知边和角(两个,其中必有一边)所有未知的边和角。依据:边的关系:;角的关系:A+B=90;边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度和水平宽度的比叫做坡度(坡比)。用字母表示,即。坡度一般写成的形式,如等。把坡面与水平面的夹角记作(叫做坡角),那么。3、从某点的指北方向按顺时针转到目标方向的水平角,叫做

3、方位角。如图3,OA、OB、OC、OD的方向角分别是:45、135、225。4、指北或指南方向线与目标方向 线所成的小于90的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是:北偏东30(东北方向) , 南偏东45(东南方向),南偏西60(西南方向), 北偏西60(西北方向)。sin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsin 三角函数公式汇总1L弧长=R= S扇=LR=R2=正弦定理:= 2R(R为三角形外接圆半径)余弦定理:a=b+c-2bc b=a+c-2ac c=a+b-2ab S=a

4、=ab=bc=ac=2R=pr=(其中, r为三角形内切圆半径) 同角关系:商的关系:= 倒数关系:平方关系: (其中辅助角与点(a,b)在同一象限,且)函数y=k的图象及性质:()振幅A,周期T=, 频率f=, 相位,初相五点作图法:令依次为 求出x与y, 依点作图诱导公试sincostgctg-+-+-+-+2-+-2k+三角函数值等于的同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限sincontgctg+-+-+-三角函数值等于的异名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限和差角公式 其中当A+B+C=

5、时,有:i). ii).二倍角公式:(含万能公式) 三倍角公式:半角公式:(符号的选择由所在的象限确定) 积化和差公式: 和差化积公式: 反三角函数:名称函数式定义域值域性质反正弦函数增 奇反余弦函数减反正切函数R 增 奇反余切函数R 减 最简单的三角方程方程方程的解集 三角公式汇总2一、任意角的三角函数在角的终边上任取一点,记:,正弦: 余弦:正切: 余切:正割:余割:注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段、分别叫做角的正弦线、余弦线、正切线。二、同角三角函数的基本关系式倒数关系:,。商数关系:,。平方关系:,。三、诱导公式、的三角函数值,等于的

6、同名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名不变,符号看象限)、的三角函数值,等于的异名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名改变,符号看象限)四、和角公式和差角公式 五、二倍角公式二倍角的余弦公式有以下常用变形:(规律:降幂扩角,升幂缩角) ,。六、万能公式(可以理解为二倍角公式的另一种形式),。万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。七、和差化积公式 了解和差化积公式的推导,有助于我们理解并掌握好公式:两式相加可得公式,两式相减可得公式。两式相加可得公式,两式相减可得公式。八、积化和差公式我们可以把积化和差公式看成是和差化积公式的逆应用。九、辅助角公式()其中:角的终边所在的象限与点所在的象限相同,。十、正弦定理(为外接圆半径)十一、余弦定理 十二、三角形的面积公式 (两边一夹角)(为外接圆半径)(为内切圆半径)海仑公式(其中)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁