数学 第二章 函数本章整合 新人教B版必修1 .ppt

上传人:yl****t 文档编号:97288289 上传时间:2024-05-24 格式:PPT 页数:43 大小:2.15MB
返回 下载 相关 举报
数学 第二章 函数本章整合 新人教B版必修1 .ppt_第1页
第1页 / 共43页
数学 第二章 函数本章整合 新人教B版必修1 .ppt_第2页
第2页 / 共43页
点击查看更多>>
资源描述

《数学 第二章 函数本章整合 新人教B版必修1 .ppt》由会员分享,可在线阅读,更多相关《数学 第二章 函数本章整合 新人教B版必修1 .ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、本章整合第二章 函数专题一专题二专题三专题四专题五专题一分段函数的相关问题1.因为分段函数在定义域的不同部分有不同的对应关系,所以分段函数可以将不同函数综合在一起,体现了知识的重组和再生;2.解决分段函数问题能体现分类讨论的思想方法和函数性质的综合应用,展现了基础知识的横向联系,数学方法上的纵向引申,在考查知识上有一定的弹性,成为历年高考的必考知识点之一.专题一专题二专题三专题四专题五提示:应讨论1-a,1+a与1的大小关系,即讨论a与0的大小关系.解析:(1)当a0时,1-a1,有f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a,即2-a=-1-3a,专题

2、一专题二专题三专题四专题五专题一专题二专题三专题四专题五 提示:f(x)在R上单调递减,应要求f(x)在每一段上都要单调递减,并且还应使左边一段的最小值不小于右边一段的最大值.答案:(-,-2 专题一专题二专题三专题四专题五提示:转化为函数f(x)的图象与平行于x轴的直线至少有2个不同交点的问题进行求解.专题一专题二专题三专题四专题五专题一专题二专题三专题四专题五专题二函数图象及其应用函数的图象是变量间的直观反映,能较形象地分析出变量间的变化趋势,也是研究函数性质(最值、单调性)的有力工具,并且函数图象的应用正是体现了数形结合的重要思想.如果能够将抽象的数学语言与直观的几何图形有机结合起来,就

3、能促使抽象思维和形象思维的和谐统一,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到解决.专题一专题二专题三专题四专题五应用1某地一天内的气温Q(单位:)与时刻t(单位:h)之间的关系如图所示,令C(t)表示时间段0,t内的温差(即时间段0,t内最高温度与最低温度的差).C(t)与t之间的函数关系用下列图象表示,则正确的图象大致是()专题一专题二专题三专题四专题五解析:由题图知Q与t之间的关系的图象过点(0,-2),(4,-4),(8,0),(24,-12),当t=0时,C(t)=0;当t=4时,C(t)=2;当t=8时,C(t)=4;当t=24时,C(t)=16

4、.则C(t)与t的函数关系的图象过点(0,0),(4,2),(8,4),(24,16).可知选项D正确.答案:D专题一专题二专题三专题四专题五应用2求函数y=|x+2|-|x-2|的最小值.提示:思路一:画出函数的图象,利用函数最小值的几何意义,写出函数的最小值;思路二:利用绝对值的几何意义,转化为数轴上的几何问题:数轴上到2两点的距离差的最小值.专题一专题二专题三专题四专题五专题一专题二专题三专题四专题五专题三函数性质中的含参数问题研究函数往往从定义域、值域、单调性、奇偶性、对称性入手,分析函数的图象及其变化趋势.从近几年的高考形式来看,对函数性质的考查,多数情况下都含有参数,这就需要合理地

5、对参数进行分类讨论及界定参数的性质.专题一专题二专题三专题四专题五应用1若函数f(x)=|2x+a|的单调递增区间是3,+),则a=.答案:-6 专题一专题二专题三专题四专题五应用2判断f(x)=|x+a|-|x-a|(aR)的奇偶性.提示:要注意字母a对函数性质的影响,即对a进行分类讨论.解:函数的定义域为(-,+),关于原点对称.(1)当a0时,f(-x)=|-x+a|-|-x-a|=|x-a|-|x+a|=-(|x+a|-|x-a|)=-f(x).(2)当a=0时,函数f(x)=|x+a|-|x-a|变为f(x)=|x|-|x|=0,有f(-x)=f(x)=0,且f(-x)=-f(x)=

6、0.综上可知,当aR,且a0时,函数f(x)为奇函数;当a=0时,函数f(x)既是奇函数又是偶函数.专题一专题二专题三专题四专题五应用3已知函数f(x)=-x(x-a),xa,1,(1)若函数f(x)在区间a,1上是单调函数,求a的取值范围;(2)求f(x)在区间a,1上的最大值g(a).提示:(1)对称轴决定着二次函数的单调性;(2)对对称轴进行讨论,并结合所给的区间求解.专题一专题二专题三专题四专题五专题一专题二专题三专题四专题五专题四函数与方程的思想在解题中的应用所谓函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,剔除问题中的非数学因素,抽象其数学特征,用函数的形式把这

7、种数量关系表示出来,并加以研究,运用函数的性质使问题得到解决的思想.所谓方程的思想,就是在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的制约关系,列出方程(组),从而求出未知数及各量的值,使问题得到解决.所设的未知数,沟通了变量之间的联系.方程可以看作未知量与已知量相互制约的条件,它架设了由已知探索未知的桥梁.事实上,方程f(x)=0的解就是函数y=f(x)的图象与x轴交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程思想是动中求静,研究运动中的等量关系.专题一专题二专题三专题四专题五专题一专题二专题三专题四专题五专题一专题二专题三专题四专题五应

8、用2设函数f(x)=ax+2a+1(a0),在-1x1上f(x)存在一个零点,求实数a的取值范围.提示:先利用零点存在性定理转化为f(-1)f(1)0,再结合函数的图象解不等式即可.专题一专题二专题三专题四专题五专题一专题二专题三专题四专题五专题五有关抽象函数的问题抽象函数是中学数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开.它常以函数或方程的形式出现,常见的题型是求某些特殊值,这类抽象函数问题一般已知条件会给出定义域、某些性质及运算式.其解法常用“赋值法”,即在其定义域内令变量取某特殊值来求解,关键是抽象问题具体化.专题一专题二专题三专题四专题五应用1定义在-2,2上的偶函数f

9、(x)在区间0,2上单调递减,若f(1-m)0时,f(x)0,f(-1)=-2,求f(x)在-2,1上的值域.提示:(1)可通过t=x-2进行代换,由f(-t)+f(t)=0,得f(x)为奇函数;(2)通过当x0时,f(x)0,判断函数的单调性,再通过令y=-x进行代换,则f(0)=f(x)+f(-x),进而对x=y=0赋值得f(0)的值,从而判断出f(x)的奇偶性,由此求解.专题一专题二专题三专题四专题五解:(1)由f(2-x)+f(x-2)=0,令t=x-2,有f(-t)+f(t)=0,故f(x)为奇函数,则有f(0)=0.又因为f(x+4)=f4-(x+4)=f(-x)=-f(x),所以

10、f(x+8)=-f(x+4)=f(x),所以f(2 016)=f(2 008)=f(2 000)=f(0)=0.专题一专题二专题三专题四专题五(2)任取x1,x2R,且x10.由条件当x0时,f(x)0,知f(x2-x1)0.因为f(x2)=f(x2-x1)+x1=f(x2-x1)+f(x1)f(x1),所以f(x)为增函数.令y=-x,则f(0)=f(x)+f(-x).又令x=y=0,得f(0)=0.故f(-x)=-f(x).因此,f(x)为奇函数.于是f(1)=-f(-1)=2,f(-2)=2f(-1)=-4.故f(x)在-2,1上的值域为-4,2.1 2 3 4 5 6 7 8 9 10

11、 111(课标全国高考)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数1 2 3 4 5 6 7 8 9 10 11解析:由于f(x)是奇函数,g(x)是偶函数,于是f(-x)=-f(x),g(-x)=g(x).f(-x)g(-x)=-f(x)g(x)=-f(x)g(x),因此f(x)g(x)是奇函数,故A错;|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),因此|f(x)|g(x)是偶函数,故

12、B错;f(-x)|g(-x)|=-f(x)|g(x)|=-f(x)|g(x)|,因此f(x)|g(x)|是奇函数,故C正确;|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,因此|f(x)g(x)|是偶函数,故D错.答案:C1 2 3 4 5 6 7 8 9 10 112(浙江高考)已知函数f(x)=x3+ax2+bx+c,且0f(-1)=f(-2)=f(-3)3,则()A.c3B.3c6C.691 2 3 4 5 6 7 8 9 10 11解析:因为f(-1)=f(-2)=f(-3),所以-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c.由-1+a-b+c

13、=-8+4a-2b+c,整理得3a-b=7,由-8+4a-2b+c=-27+9a-3b+c,整理得5a-b=19,故f(-1)=f(-2)=f(-3)=c-6.又因为0f(-1)=f(-2)=f(-3)3,所以0c-63,解得60,则x的取值范围是.解析:f(x)是偶函数,f(-x)=f(x)=f(|x|).f(x-1)0可化为f(|x-1|)f(2).又f(x)在0,+)上单调递减,|x-1|2,解得-2x-12,即-1x0,于是f(f(a)=f(a2+2a+2)=-(a2+2a+2)2,令-(a2+2a+2)2=2,显然无解;当a0时,f(a)=-a20,于是f(f(a)=f(-a2)=(-a2)2+2(-a2)+2=a4-2a2+2,令a4-2a2+2=2,1 2 3 4 5 6 7 8 9 10 1111(安徽高考)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0 x1时,f(x)=x(1-x),则当-1x0时,f(x)=.解析:-1x0,0 x+11,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁