《【数学】条件概率练习题-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx》由会员分享,可在线阅读,更多相关《【数学】条件概率练习题-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、条件概率练习题1某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A0.8B0.4C0.2D0.12将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是ABCD3将三颗骰子各掷一次,记事件“三个点数都不同”,“至少出现一个6点”,则条件概率,分别等于A,B,C,D,4育人中学举行“学习党代会,奋进新征程”交流会,共有6位老师、4位学生进行发言现用抽签的方式决定发言顺序,事件表示“第k位发言的是学生”,则()ABCD5有6个相同的球,分别标有数字1,2
2、,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A甲与丙相互独立B甲与丁相互独立C乙与丙相互独立D丙与丁相互独立6某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立已知该棋手与甲、乙、丙比赛获胜的概率分别为,且记该棋手连胜两盘的概率为p,则()Ap与该棋手和甲、乙、丙的比赛次序无关 B该棋手在第二盘与甲比赛,p最大C该棋手在第二盘与乙比赛,p最大D该棋手在第二盘与丙比赛,p最大(多选题)7A,B为随机事件,已知
3、,下列结论中正确的是()A若A,B为互斥事件,则B若A,B为互斥事件,则C若A,B是相互独立事件,D若,则(多选题)8甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球.先从甲罐中随机取出一球放入乙罐,分别以、和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是()A BC事件与事件相互独立D、是两两互斥的事件(多选题)9在信道内传输0,1信号,信号的传输相互独立发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输单次传输是指每个信号只发送1
4、次,三次传输 是指每个信号重复发送3次收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B采用三次传输方案,若发送1,则依次收到1,0,1的概率为C采用三次传输方案,若发送1,则译码为1的概率为D当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率1052张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为 ;已知第一次抽到的是A,则第二次抽取A的概率为 11 甲、乙两队进行篮球决赛
5、,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是 12 设在张彩票中有一张中奖彩票,则第二个人抽到该中奖彩票的概率是 13一批产品共100件,其中有10件不合格品,从中一个一个取出,求(1)第三次才取得不合格品的概率是多少?(2)第三次取得不合格品的概率是多少?检测题1 假设有一批产品中一、二、三等品各占60%、30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率为 2 有6道不同的数学题,其中有4道函数题,2道概率题,每次从中随机抽出1道题,抽出的题不再放回.在第一次抽到函数题的条件下,第二次还是抽到函数题的概率是 3甲乙两人独立地对同一目标各射击一次,命中率分别为06和05,现已知目标被击中,则它是被甲击中的概率为 试卷第4页,共4页学科网(北京)股份有限公司学科网(北京)股份有限公司