《华东师大版七年级上册数学教案(全版).pdf》由会员分享,可在线阅读,更多相关《华东师大版七年级上册数学教案(全版).pdf(196页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、华东师大版七年级上册数学教 案全1.1第一章与数学交朋友教学目的:1、使学生初步到数学与现实世界的密切联系,懂得数学的价 值,形成用数学的意识;2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。教学分析:重点:加强数学意识;难点:数学能力的培养。教学过程:一、与数学交朋友1、数学伴我们成长人来到世界上的第一天就遇到数学,数学将哺育着你的成长。数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明 To从生活的一系列人生活动中,我们会逐渐意识到这一切的一切 都和数、数的运算、数的比较、图形的大小、图形的形状、图形的2位置有关。另外,数学知识开阔了你的视野,改变了你的
2、思维方式,使我们变得更聪明。2、人类离不开数学自然界中的数学不胜枚举。如:蜜蜂营造的峰房;电子计算机等等。从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成:3、人人都能学会数学数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现 和提出问题,要善于独立思考。学好数学还要关于把数学应用于实际问题。二、激发训练:三、作业巩固:3第一章 走进数学世界1.2 让我们来做数学教学目的:1、使学生对数学产生一定的兴趣,获得学好数学的自信心;2、使学生学会与他人合作,养成独立思考与合作交流的习惯;3、使学生在数学活
3、动中获得对数学良好的感性认识,初步体 验到什么是“做数学”。教学分析:重点:如何培养学生对数学的兴趣;难点:学生对数学的感性认识。教学过程:一、让我们来做数学:1、跟我学要正确地解数学题,需要掌握数学题的方法。例:如图所示的3 3的方格图案中多少个正方形?42、试试看例:在如图中,填入1、2、3、4、5、6、7、8、9这9个数,使每行、每列及对角线上各数的和都为15。25914381215例:在上图中,已经填入了 1至16这16个数中的一些数,请 将剩下的数填入空格中,使每行、每列及对角线上各数的和都为34。例:红旗小学学生张勇和他的爸爸、妈妈准备在国庆节外出旅 游。春光旅行社的收费标准为:大
4、人全价,小孩半价;而华夏旅行 社不管大人小孩,一律八折。这两家旅行社的基本价都一样(每人 100元),你认为应该去哪家旅行社较为合算?二、激发训练:三、知识小结:通过以上两节的学习,我们要一定喜欢上它,并希望它天天陪5伴你。在以后的学习中,我们将在小学的基础上学到更多新的知识。四、作业巩固:第二章 有理数2.1 正数和负数教学目的:1、明白生活中存在着无数表示相反意义的量,能举例说明;6二、激发训练:三、知识小结:通过以上两节的学习,我们要一定喜欢上它,并希望它天 天陪伴你。在以后的学习中,我们将在小学的基础上学到更多 新的知识。四、作业巩固:第二章 有理数2.1 正数和负数教学目的:1、明白
5、生活中存在着无数表示相反意义的量,能举 例说明;2、能体会引进负数的必要性和意义,建立正数和负数的 数感。教学分析:重点:通过列举现实世界中的“相反意义的量”的例子来引 进正数和负数,要求学生理解正数和负数的意 0收入500元和支出237元;水位升高1.2米和下降0.7米;上面所列举的表示相反意义量,我们也许就会发现:如用原来所学过的数很难 区分具有相反意义的量。一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零 除外)前面放上一个一”号来表示。如:在表示温度时,通常规定零上为“正二零下为“负”即零上10C表示
6、为10 C,零下5 C表示为-5 C概括:我们把这一种新数,叫做负数,如:-3,-45,过去学过的那些数(零除外)叫做正数,如:1,2.2-零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-1,0,-11,+123,3三、阶梯训练:1,2,3,4四、知识小结:从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通8过运用发现相反意义量,能理解引进“负数”的必要性及其意义。五、作业巩固:六、每日预题:我们都学过哪些数,应该怎么样来分类?第二章 有理数2.1 正数和负数教学目的:1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行
7、分类判别;2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的9理解。教学分析:重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意 义,及有理数的两种不同分类的重要意义。难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。教学过程:一、知识导向:通过上节课对“负数”概念的引入,通过对数范围的补充及扩大,进一步 引入了有理数的概念,并对扩大后的数的范围进行重新分类。二、新课拆析:1、引例:(1)请学生说出负数的特征,并指出实例说明。(2)以第(1)题中,学生所回答的数进一步分析,不同数的 不同特点。2、通过对“负数”的引入,从我们所接触的数可发
8、现有这样几类:正整数:如1,2,34,零:0负整数:如-1,-3,-5,10正分数:如L,4.5,3 7负分数:如一:,-2-,-0.3,由此我们有:概括:正整数、零和负整数统称为整数;正分数、负分数统称为分数;整数和分数统称为有理数。然后根据我们的概括,我们可以对有理数进行如下的分类分类一:分类二:正整数正整数零整数正有理数 正分数有理数负整数有理数零正分数负有率t负整数负分数负分数3、有关集合的简单知识:11概括:把一些数放在一起,就组成一个数的集合,简称为数集;所有的有理数组成的数集叫做有理数集;所有的整数组成的数集叫做整数集;一例:把下列各数填入表示它所在的数值的圈里:-18,3.14
9、16,7正整数CS整数集三、巩固训练:0,2001,-0.142857,95%5)C_3负整数)有理数集1,2,312四、知识小结:从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。五、作业:1 2,3,4六、每日预题:什么是数轴,数轴有什么作用,应怎么样在数轴上表示数?13第二章 有理数 2.2 数轴数轴教学目的:1、要求学生会正确画出数轴,初步了解有理数与数轴上点 的对应关系;2、能将有理数用数轴上的点来表示。教学分析:重点:正确画出数轴,加深对数轴概念的理解。难点:应理清有理数与数轴上的点的对应关系。教学过程:一、知识导向:本节课通过对生活中温度计的认识,引出数轴,对照有
10、理数中 新增加的负数,联系生活经验,讲解数轴的概念及画法,注重有理 数与数轴的对应关系。二、新课拆析:141、从两个角度引出数轴:其一,在小学学习数学时,就能用直线上依次排列的点来表 示自然数;其二,温度计上有刻度,可能读出温度的度数,并且区分出 是零上还是零下。2、数轴概念及画法:第一步:画一条直线(通常画成水平位置);第二步:在这条直线上任取一点作为原点,用这点表示0;第三步:规定直线上从原点向右为正方向,画上箭头,而相 反方向为负方向;第四步:选取适当的长度作为单位长度,从原点向右,每隔 一个单位长度取一点,依次标上1、2、3、;从 原点向左,每隔一个单位长度取一点,依次标上1、-2、-
11、3、。概括:像这样规定了原点、正方向和单位长度的直线叫做数轴。-4-3-2-101234153、正确在数轴上表示任何有理数:在数轴上画出表示有理数,可以先由这个数的符号确定它在数 轴上原点的哪一边(正数在原点的右边,负数在原点的左边),再 在相应的方向上确定它与原点相距几个单位长度,然后画上点。学生一般容易掌握整数在数轴上的表示,要联系分数和小数的 意义,启发学生发现和掌握分数与小数在数轴上的表示方法。例:画出数轴,并在数轴上画出表示下列各数的点:4,-2,-4.5,03三、巩固训练:P23 ex c l,2,3四、知识小结:本节课从生活中的实际入手,从小学所学的知识入手,引出数 轴的概念。从
12、学习中要学生学会画出数轴,学会在数轴上表示出有 理数。五、家庭作业:P25 ex c l,2,3,4六、每日预题:16在数轴上的两个数在数轴上的位置有何关系,能否根据两个在 数轴上的两点的位置去判断这两个数的大小?17第二章 有理数 2.2 数轴在数轴上比较数的大小教学目的:1、通过观察数轴上点的位置关系,初步比较有理数的大小;2、初步认识图形和数量的对应关系。教学分析:重点:负数和零的大小比较。难点:如何启发学生自己得到有理数的大小比较的约定,并认识其合理性。18教学过程:一、知识导向:能过上节课对数轴的学习,通过对有理数与数轴上的点的对应 关系,发现正数、零、负数在数轴上的位置关系,并进一
13、步地发现 三者的大小关系。二、新课拆析:1、设疑:其一:小学学会了正数及零的大小比较,但有了负数后应如 何比较?其二:从数轴上的任意两个点的位置,能否判断出它们的大 小关系?有无什么特点?其三:温度计上的两个不同温度的刻度在位置上有什么关系,从数值上看,有无什么特点?2、从以上的设疑中,我们是否能得到:概括:在数轴上表示的两个数,右边的数总比左边的数大。法则:正数都大于零,负数都小于零,正数大于负数。3、数轴点的移动与点的数值的关系:应注意到移动的方向及移动的单位长度,并能对移动后的点,19所表示的数值进行确定。反之应能说明,两个不同点的相互移动的 方式,即确定两点之间的位置关系,为下一节有关
14、绝对值的学习作0例:将有理数3、0、13、-4按从小到大的顺序排列,用“V”6号连接起来。例:通过在数轴上表示,比较下列各数的大小:-1.3,0.3,-3,-5例:在数轴上的点A:4,如果A点先向左移动5个单位,再 向右移动9个单位,得到的点是B,则B表示的数是什 么?三、巩固训练:P25 ex c l、2四、知识小结:通过结合有理数在数轴上的位置,发现正数、零、负数在数轴20上的位置关系,确定了正数、零、负数的大小比较法则,并能通过 数轴来比较任意两个非确定数的大小。五、家庭作业:P25 ex c 4s 5、6、7、8六、每日预题:1、-5与5这两个数有何异同点,在数轴上表示后,在位置上有何
15、特点?2、什么数的两个数称为相反数,如何求出任何数的相反数?2122第二章 有理数2.3 相反数教学目的:1、使学生能理解“两数互为相反数”的意义;2、会写出已知数的相反数;3、懂得简单的简化符号的运算。教学分析:重点:能准确写出任意数的相反数,对简化符号能正确应用。难点:相反数的意义及有理数的组成。教学过程:一、知识导向:通过举出两个相反数,进行其表现形式的特点,及两数在数轴 上的位置特点,来说明所谓相反数的特征及求法。23二、新课拆析:1、设疑:其一:-3与3(+3)在数的形式上有何异同点?其二:-3与3(+3)在数轴上的位置有何异同点?其三:如果从数轴上的0点出发,分别向左右移动3个单位
16、,会得到什么结果?2、两个数互为相反数的意义及相反数的求法:概括:只有符号不同的两个数称互为相反数特点:在数轴上表示互为相反数的两个数的点分别位于原点的旁,且与原点的距离相等求法:通常在一个数的前面添上号,得到的这个新数表示原数的相反数,即-a表示a的相反数同样,在一个数前面添上号,表示这个数本身概括:正数的相反数是负数零的相反数是零(即零的相反数是其本身)负数的相反数是正数置疑:一个数的相反数与其本身的大小关系?24例:分别写出下列各数的相反数:5、7、3L、+11.22例:化简下列各数:(1)-(+10)(2)+(-0.15)(3)+(+3)(4)-(-20)三、巩固训练:P28 ex c
17、 l、2、3四、知识小结:通过对相反数的学习,必须掌握两个数互为相反数的意义,能 准确地写出任意一个有理数的相反数。五、家庭作业:P28 1、2、3、425六、每日预题:1、观察-6、+6与数轴原点的位置关系,分别说出两数与原点 的距离。2、什么是绝对值?如何求任何一个数的绝对值?26第二章 有理数27 2.4 绝对值教学目的:1、要求学生理解一个数的绝对值的意义;2、会求出已知数的绝对值;3、通过绝对值和数轴的联系,让学生加深对数轴作用的认识。教学分析:重点:通过对绝对值意义的学习,能熟练地求出一个数的绝对值。难点:绝对值的几何意义的理解及运用。教学过程:一、知识导向:在相反数意义的学习基础
18、上,通过对数值与距离的关系,分析 有关绝对值的几何意义,并反过来进一步重新认识相反数的意义。二、新课拆析:1、设疑:其一:如果我们要知道一辆汽车的行驶路程与耗油量的关系28是否与汽车的行驶方向有关?其二:如果我们要说出数轴上一点与原点的距离是还与这个点在数轴的正负半轴有关系?2、绝对值的几何意义及绝对值的求法、表示法数轴的几何意义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作:|a|(结合分析P29的“试一试”进行讲解)概括:一个正数的绝对值是它本身零的绝对值是零一个负数的绝对值是它的相反数即:不论有理表示:?a(a0)|a|A 0(a=0)-1(a 0例:求下列各数的绝对值:
19、29 71、+L-4.75 10.52 10例:化简:I-(+1)I(2)-|-11|2 3三、巩固训练:P31 ex c l、2、3四、知识小结:通过对绝对值的学习,明白绝对值的几何意义,懂得如何求出 一个有理数的绝对值,并能记住任何一个数的绝对是都是非负数的 性质。五、家庭作业:P31 ex c l、2、3、4六、每日预题:1、如何比较两个正数的大小?在数轴上如何比较两个数的大30小2、如何通过数轴上的位置来总结两个负数的大小比较方法?数a取何值,它的绝对值总是正数或0(通常称为非负数)。31第二章 有理数2.5 有理数的大小比较教学目的:1、要求学生会利用绝对值比较两个负数的大小;2、掌
20、握有理数大小比较的一般方法。教学分析:32重点:通过对两个负数比较大小过程的推理,培养学生的推理 能难点:比较两个负数的大小。教学过程:一、知识导向:本节课通过对小学阶段学过的两个正的分数或小数的大小比 较及前面正数、零、负数的大小比较知识作适当复习,充分利用数 轴和绝对值的知识,通过直演示,将数轴上在原点左侧表示数的“点 距原点越远”,与这个“数的绝对值越大”相对应起来。让学生在 直观上感受到两个负数大小比较法则的合理性。二、新课拆析:1、知识基一:其一:小学阶段对两个正数的大小比较知识;其二:正数与零、负数与零、正数与负数的大小比较;其三:数轴上的点的位置与数大小的关系;其四:求绝对值的方
21、法及绝对值的特点。2、知识形成:33(引例)如何通过数轴比较-2与-6的大小?释疑:数轴上的数,右边的数比左边的数大通过对几个例子的分析能让学生认识到:在数轴上因为表示两 个负数的两个点中,与原点距离较大的那个点在左边。概括:两个负数,绝对值大的反而小。例:比较下列各对数的大小:(1)-1 与-0.01(2)J2I 与 0(3)一0.3与1(4)()与1_J_|3 9 10注意:在比较两个负数的大小时,应强调学生注意比较的方法及它们之间的推理关系。三、巩固训练:P34 ex c l、2、3、4四、知识小结:本节课结合前面所学的正数间的大小比较及正数、零、负数的 大小比较,结合数轴上两个数的大小
22、比较,结合负数的绝对值与数34的位置关系,从而得到两个负数的大小比较方法。关在其中初步培 养学生的推理能力及转化能力。五、家庭作业:P34 A:ex c l、2、3B:ex c 4六、每日预题:1、如何利用正负数来表示相反意义量?请举例说明?2、如果一个人从某地出发,先走了 20米,又走了 30米,它 最后的位置可能与原出发位置相距多少米?有几种情况,请列式表示。3536第二章 有理数2.6 有理数加法有理数的加法法则教学目的:1、要求学生会进行有理数的加法运算;2、能正确应用加法运算律简化计算。教学分析:重点:有理数加法运算中符号的确定。难点:异号两数相加。教学过程:一、知识导向:37教材引
23、入的例题开始未明确指出行走方向,旨在引起学生在有 理数运算中对符号的重视,让学生参与发现和归纳的过程,得到较 深刻的印象。二、新课拆析:1、问题探索:有一位同学在一条东西向的跑道上,先走了 20米,又走了 30 米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多 少米?根据我们所学过的用正负数来表示相反意义量,即规定向东为 正,向西为负。(1)若两次都是向东走,则一共向东走了 50米,表示:(+20)+(+30)=+50(2)若两次都是向西走,则一共向西走了 50米,表示:(-20)+(-30)=-50以上两种情形都具有类似的情形,即:方向上是相同的,且结 果具有类似处的。(3)若第一
24、次向东走20米,第二次向西走30米,则最后位38于原来位置的西方10米,表示:(+20)+(-30)=-10(4)若第一次向西走20米,第二次向东走30米,则最后位 于原来位置的东方10米,表示:(-20)+(+30)=+10以上两种情形都具有类似的情形,即:方向上是相反的,且结 果具有类似处的。(5)若第一次向西走30米,第二次向东走30米,则最后位 于原来位置,表示:(-30)+(+30)=0(6)若第一次向西走20米,第二次没走,则最后位于原来位 置的西方10米,表示:(-20)+0=-20概括:有理数加法法则:#同号两数相加,取相同的符号,并把绝对值相加;#绝对值不等的异号两数相加,取
25、绝对值较大的加数的符 号,并用较大的绝对值减去较小的绝对值;39#互为相反数的两个数相加得零;#一个数与零相加,仍得这个数。例:计算:(1)(+2)+(-11)(2)(+20)+(+12)(3)(_11)+(_)(4)(-3.4)+4.3注意:一个数由符号与绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号与绝对值。三、巩固训练:P37 cxcIn 2、3、4四、知识小结:本节课通过对不同情况下的结果,利用正负数来表示相反意义 的量及位置的变化,从而引出有理数的加法法则,初步培养学生的 分类分析能力。在运算中应特别注意异号相加的情况,学会如何确 定结果的符号及绝对值。五、家庭作业:40
26、P40 A:ex c l 2B:ex c 5(1)六、每日预题:小学有学过哪些运算律,这些运算律对运算结果有无影响?412.6 有理数的加法有理数加法的运算律教学目的:1、如何促使学生在已有基础上对运算律的再认识。2、能够运用运算律对现有的计算进行简便运算。教学分析:重点(难点):运算律的灵活运用教学过程:一、知识导向:在上一节学习有理数加法法则的基础上,结合小学学过的有关 运算律,对多个有理数相加的情况进行运算,并在其中进行灵活运 用运算律,促使运用的快与准。二、新课拆析:421、知识基础:其一:有理数的加法法则;(同号相加、异号相加、互为相反数相加、同0相加)其二:小学学过的有关加法的运算
27、律。(加法交换律、加法结合律)2、知识运用:(引例1)计算:(+20)+(-30)=-10(-30)+(+20)=-10(引例 2)计算:(+3)+(-6)+(+1)=-2(+3)+(-6)+(+1)=-2概括:加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把 后两个数相加,和不变(a+b)+c=a+(b+c)例:计算(1)(+26)+(-18)+5+(-16)(2)(_13)+J+(+71)+(-21)+(-81)3 2 4 3 243例:10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,
28、-4,2.5,1.5,3,-1,0,-2.5问这10筐苹果总共重多少?三、巩固训练:P40 ex c l、2四、知识小结:本节课主要通过能有理数的加法法则及加法的交换律、加法的 结合律的学习,能多个有理数的加法进行简化运算。五、家庭作业:P41 A:ex c 3 4、5(2、3)44B:ex c 5(4)六、每日预题:1、如何计算3比-2大多少?2、如何把减法转化为加法,应注意什么?第二章 有理数452.7 有理数的减法教学目的:1、要求学生会将有理数减法转换成加法计算;2、让学生进一步认识到化归思想在数学学习中的应用。教学分析:重点:减法法则的运用。难点:如何通过实例引入有理数减法法则。教学
29、过程:一、知识导向:本节课是在学习加法法则的基础上,根据减法是加法的逆运算 以及有理数加法法则,通过实例引入有理数减法法则,在其过程中 应对学生逐渐渗透数学上的重要的化归思想。在减法运算的学习中 应着重促使学生对法则的应用。二、新课拆析:1、知识基础:其一:有理数的加法法则;其二:小学所学习的减法运算与加法运算的关系。462、设疑:珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰高多少?列式:8848-(-155)3、知识形成:引例:(8)(3)=?根据加法与减法互为逆运算可知:(?)+(3)=-8而从加法中我们又可得:(-5)+(-3)=-8由此有:(-8)-(-3
30、)=-5同时:(8)+(+3)=5所以:(-8)-(-3)=(-8)+(+3)概括:有理数的减法法则:减去一个数,等于加上这个数的相反数。例:计算:三、巩固训练:P43 ex c l、2、347四、知识小结:本节课通过在学习加法法则及运用加法与减法互为逆运算的 方法得到有关有理数的减法法则,在运算中应注意到必须“两处同 时改变符号“缺一不可。五、家庭作业:P44 A:ex c l、2B:ex c 3%4、5C:ex c 6六、每日预题:1、有理数的加减混合运算可以如何统一成加法?2、去括号后应如何对有理数进行加减?48第二章 有理数 2.8 有理数的加减混合运算加减法统一成加法教学目的:1、要
31、求学生理解加减混合运算统一为加法运算的意义。2、能初步掌握有关有理数的加减混全运算。教学分析:重点:如何更准确地把加减混合运算统一成加法。难点:将一个加减混合运算式写成省略加号的和的形式。教学过程:49一、知识导向:本节是在对前面所学的有理数的加法运算法则及减法运算法 则的综合运用,所以必须对有关法则有更深层次的认识,并能在运 算中加以灵活运用。二、新课拆析:1、知识基础:其一:有理数的加法法则;其二:有理数的减法法则。其三:“+”、在不同情形的意义(运算符号及性质符号)2、知识形成:(引例)计算:(8)(10)+(6)(+4)根据减法法则,按照运算顺序,有:原式二(8)+(+10)+(6)+
32、(4)在一个加式里,通常把各个加数的括号和它前面的加号省略不 写,即有:=-8+10-6-4这个式子仍看作和式,有两种读法,按性质符号:读作“负8、正10、负6、负4的和”50按运算意义:读作“负8加上10减去6减去4”例:把(+(_1)_(+;)(_5(+1)写成省略加号的和的形式,并把它读出来(两种读法)。例:按运算顺序直接计算:(-7)-(-10)+(-8)-(+2)三、巩固训练:P46 ex c l、2四、知识小结:本节课所涉及到的新知识点比较少,但在其中就特别注意的 是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对 若略加号的算式的准确读法。五、家庭作业:P47 A:ex
33、c l、251B:ex c 3六、每日预题:如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?52第二章 有理数 2.8 有理数的加减混全运算加法运算律在加减混全运算中的应用教学目的:对有理数的加减混合运算进行灵活计算。教学分析:重点:如何使有理数的加减混全运算更准确更灵活。教学过程:一、知识导向:本节课主要是利用上节课的知识点来进一步学习有关有理数 的加减混合运算,以求学生对其运算的合理性及准确性的更高水平 的掌握。二、新课拆析:1、复习:53其一:有理数的加法法则、减法法则;其二:把有理数的加减混合运算统一成加法的方法与步骤。例:把(+4)+(-6)-(+11)-(-3)-
34、(+8)写成省略加号的和的形式,并把它读出来(两种读法)。2、知识应用:在有理数加法运算中,通常适当应用加法运算律,可使计算简 化,有理数的加减混合运算统一成加法后,一般也应注意运算的合 理性。例:计算:(1)-24+3.2-16-3.5+0.3 0 213+(+3 2)-(二)-(+0.25)3 4 3三、巩固训练:P47 excl、2四、知识小结:本节通过对有理数的加法法则与减法法则的灵活运用,通过灵 活运用加法运算律,对有理数混合运算进行合理性,灵活性的处理,54从而准确解决有关加减的混合运算。五、家庭作业:P48 A:ex c 4B:ex c 5六、每日预题:1、小学中如何得到两数相乘
35、的结果?3、如何确定两个有理数相乘的结果(符号与绝对值)?第二章 有理数2.9 有理数的乘法55有理数的乘法法则教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。教学分析:重点:对乘法运算法则的运用,对积的确定。难点:如何在该知识中注重知识体系的延续。教学过程:一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理 数的加法法则与有理数的减法法则的基础上所学习的,所以应注意 到各种法则间的必然联系,在本节中应注重学生学习的过程,多让 学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法 则。二、新课拆析:1、知识基础:其一:小学所学
36、过的乘法运算方法;56其二:有关在加法运算中结果的确定方法与步骤。2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度 爬行。情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪 个方向?相距出发地点多少米?列式:3x 2=6即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪 个方向?相距出发地点多少米?列式:(-3)x 2=-6即:小虫位于原来出发位置的西方6米处发现:当我们把“3x 2=6”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来的积“6”的相反数“-6”;同理,如果我们把“3x 2
37、=6”中的一个因数“2”换成它的相反数“-2”时,所得的积是原来的积V的相反数“-6”;概括:把一个因数换成它的相反数,所得的积是原来的积的相反数573、设疑:如果我们把“(_3)x2=-6”中的一个因数“2”换成它的相反数时,所得的积又会有什么变化?3x2=0(-3)x2=与。(-3)x(-2)=6当然,当其中的一个因数为0时,所得的积还是等于0。综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。例:计算:(-5)X(-6)(2)(-1)x12 4三、巩固训练:P52 ex c l、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般
38、中找到 规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意58如何正确得到积的结果。五、家庭作业:P57 A:ex c l、2B:ex c 3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?第二章 有理数2.9 有理数的乘法有理数乘法的运算律教学目的:1、如何促使学生在已有基础上对运算律的再认识。2、能够运用运算律对现有的计算进行简便运算。59教学分析:重点(难点):运算律的灵活运用。教学过程:一、知识导向:在上一节学习有理数乘法法则的基础上,结合小学学过的有关 运算律,对多个有理数相乘的情况进行运算,并在其中进行灵活运 用运算律,
39、促使运用的快与准。二、新课拆析:1、知识基础:其一:有理数的乘法运算法则;(两数相乘,同号得正,异号得负,同零、同1相乘)其二:小学学过的有关的乘法的运算律:(乘法交换律、乘法结合律、乘法分配律)2、知识形式:(引例 1)计算:(-3)x(+5)=-15(+5)x(-3)=-15(引例 2)计算:K-4)x(+6)x(-3)=72(-4)x(+6)x(-3)=7 260(引例3)计算:(6)x(+)+(-)=(-6)x(+-)+(-6)x(-)(-6)X(+1)+(-1)=(-6)X(+1)2 3 o概括:乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba乘法结合律:三个数相乘,先把前
40、两个数相乘,或先把后两 个数相乘,积不变。(ab)c=a(bc)乘法分配律:一个数与两个数的和相乘,等于把这个数分别 与这两个数相乘,再把积相加。a(b+c)=ab+ac例计算:(_10)xg 2、3B:ex c 465六、每日预题:如何计算一个正方形的面积、体积?66第二章 有理数2.11 有理数的乘方教学目的:1、使学生能理解乘方的意义;2、在掌握乘方的概念下,能熟练求出数的乘方。教学分析:重点:能求出任意数的正指数森。难点:能正确求负数的赛。教学过程:一、知识导向:通过结合小学的平方与立方的概念,通过对乘方的知识拓展,在充分理解乘方的概念的基础下,能顺利、准确地求出任意数的正 整数次霹,
41、并能在底数为负数时,能准确地求出其值。二、新课拆析:1、知识基础:其一:小学学过的平方、立方运算。即,a Q记作.2,读作的平方(或”的2次方)等。67其二:有关乘法的运算,特别是几个相同因数的连乘积。2、知识形成:由小学中的平方、立方运算,我们把:a 记作,概括:求几个相同因数的积的运算,叫做乘方。乘方的结果叫做赛,在中,叫做底数,叫做指数,读法:读作4的次方(Q的次森)例:计算:(-2)3(2)(-2)4(3)(-2)568第二章 有理数2.12 科学记数法教学目的:1、能初步认识科学记数的概念;2、能初步运用科学记数来表示某些数。教学分析:重点:科学记数的准确表示。难点:能初步认识到科学
42、记数法的好处。教学过程:69一、知识导向:科学记数法是一个新的知识点,也将在以后的学习中经常用的 一个知识,作为一种新的数的表示方法,应充分认识到这种表示法 的好处及其必要性。二、新课拆析:1、知识基础:作为科学记数法是以10的次赛为基础,所以必须对此应有所 认识,并抓住其规律性的东西:100=102,1000=103,10000=104,一般地,10的n次霹,在1的后面有n个0。2、知识形成:对于有些数如:光的速度大约是300 000 000米/秒;全世界人口数大约是6 100 000 000 o的数字,从表示到表达都是比较繁杂的,所以对于这样一个大 于10的数,我们将有一个新的形式:把一个
43、大于10的数记成ax lO”的形式,其中是整数位只有一 位数,像这样的记数法叫做科学记数法。70例:用科学记数表示下列各数:(1)696 000(2)1 000 000(3)58 000三、巩固训练:P65 ex c l、2四、知识小结:本节在于引入一个新的数的表示方法,主要适用于当一个数较 大时,用原来的表示方法已经难以表示,或是表示出来比较麻烦的 数字。在表示中应注意10的指数与原数的整数位的关系。五、家庭作业:P65 A:ex c l、2、3B:ex c 4 5六、每日预题:1、复习有理数的加、减、乘、除、乘方的运算法则;2、回顾小学所学过的数的四则运算(顺序)。71第二章 有理数2.1
44、3 有理数的混合运算(1)教学目的:1、对全章所学的有理数的有关运算进行复习;2、培养学生遵照一定运算顺序的习惯。教学分析:重点:运算顺序的确定。难点:各种运算中易出错的知识点。教学过程:一、知识导向:本小节分成两节课来讲授,本节课是第一节,主要是以回顾、巩固有理数的加法、减法、乘法、除法、乘方等运算法则为主,在 学习中侧重于培养学生如何确定运算顺序的方法。二、新课拆析:1、知识基础:其一:有理数的加法、减法、乘法、除法、乘方等运算法则其二:小学四则运算的运算顺序;722、知识形式:含有有理数的加、减、乘、除、乘方多种运算,称为有理数的 混合运算。关键:有理数混合运算的运算顺序:运算顺序:(1
45、)括号(先小括号,后中括号)(2)乘方(3)乘除(4)加减例:指出下列各题的运算顺序:(1)-50-2x1(2)17-8-(-2)+4x(-3)32-50-22 x-l10-l|x(0,5-|)-l|(5)_1_1_(1-0.5x43)(6)6+(3x2)例:计算:d.b+J+L3 2 4 1073三、巩固训练:P68 ex c l、2、3四、知识小结:在有理数的混合运算中,应抓住两个点:第一是各种运算的运 算法则,特别是各运算的易错点;第二是各种运算的运算顺序,注 意各种运算的先后顺序。五、家庭作业:P70 A:ex c lB:ex c 2(In 3)六、每日预题:复习有关加法与乘法的运算律
46、,及各种运算律的主要适用情 况,及它们能起到简便作用。74第二章 有理数2.13 有理数的混合运算(2)教学目的:1、在上节课的基础上继续学习有关运算;2、能运用各种运算律对运算进行简便运算。教学分析:75重点:在运算中灵活运用运算律。难点:如何提高学生运算的准确性。教学过程:一、知识导向:本节课是在上节课的基础上,对有理数的混合运算进行学习,通过结合运算律对有理数的运算进行适当的简便运算,能在原有基 础上提高运算的准确性,并对自己的运算的合理性进行判断。二、新课拆析:1、知识基一1?:其一:有关有理数的加、减、乘、除、乘方的运算法则;其二:各种运算的运算顺序;其三:各种运算律(加法交换律、结
47、合律及乘法交换律、结合 律、分配律)2、知识延续:有理数的混合运算涉及多种运算,确定合理的运算顺序是正确 解题的关键,能用简便方法的,尽量用简便方法。76例:计算:3+50+22义5例:例:计算:吗-/中+吗计算:1-(1-0.5x1)x2-(-3)2巩固训练:P70ex c l、2四、知识小结:在有理数的混合运算的第二节中,应着重注意各种运算的合理 性,对运算顺序应有一个新的认识,并能充分考虑到各种运算律对 其的灵活运用。五、家庭作业:P70 ex c 2(3、4)、3六、每日预题:771、为什么我们要学习近似数?2、如何确定一个近似数的精确度及有效数字?如何根据题目的 条件确定一个近似数?
48、第二章 有理数2.14 近似数和有效数字教学目的:1、要求学生了解近似数的概念,以由四舍五入得到的近似数,能说出它的精确度,有几个有效数字;2、给出一个数,能按指定的精确度要求,用四舍五入的方法 求4以数。教学分析:重点:近似数的准确求法及有效数字的理解。难点:近似数在实际情况下的取值。教学过程:一、知识导向:本节是以小学所学过的近似数为基础,通过以前所学过的知 识,结合新知识,对求近似数给出新的范畴,特别在引入有效数字 的的概念后,通过不同的角度来分析、认识近似数。并以此来学习78一类与实际生活中紧密联系的近似数。二、新课拆析:1、知识探索:在有些情况下,一个数可以准确无误地表示一个量,如教
49、材中 所举的,通过点数统计出的全班的人数(48人),这是一个准确无 误的数字。此夕卜规定lm=100c m中的100,全班的学生数为48中的 48都是准确数;但在大量的情况下则要用到近似数,如教材所举的 测量课本宽度的例子,就不可能做到绝对精确,也不必要搞得非常 精确。2、知识分析:使用近似数就有一个近似程度的问题,也就是精确度的问题,对于“精确到*位=应使学生明白是指四舍五人到这一位。由准确数所取得的近似数与准确数之间的误差不超过精确到 的那个数位的半个单位。如,教材上说我国陆地面积为960万平方千米,意思就是说我 国陆地面积的精确数S满足:960-0.5 S a+b=b+a等,在这里面,我
50、们都知道:Q、匕能够代表着 任意的有理数,也应就是说,在这里字母起着一种代替数的作用,这也正是代数的思想。(引例)为了测试一种皮球的弹跳高度与下落高度之间的关系 有:在上例中,我们用字母x表示下落高度,得到了弹跳高度二,2下落高度4050100150X弹跳高度20255075x/2在里头,x可以用来表示任意值的。2、知识发展:请再以下的两个引例来分析,用字母来代替数字的优点:(1)如图,求由长方形和正方形拼成的大正方形的面积:方法一,把大正方形面积看成四个小的图形面积之和,因84此,大正方形的面积为2+Z?2;方法二,把大正方形面积看成整个图形,则大正方形的边长是 a+b y 则面积为(+b)