中考数学教案学生七篇.docx

上传人:碎****木 文档编号:95152266 上传时间:2023-08-18 格式:DOCX 页数:27 大小:27.18KB
返回 下载 相关 举报
中考数学教案学生七篇.docx_第1页
第1页 / 共27页
中考数学教案学生七篇.docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《中考数学教案学生七篇.docx》由会员分享,可在线阅读,更多相关《中考数学教案学生七篇.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 中考数学教案学生七篇 第2课时反比例函数的图象与性质(2) 教学目标 【学问与技能】 1.会求反比例函数的解析式;2.稳固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性. 【过程与方法】 经受观看、分析、沟通的过程,逐步提高运用学问的力量. 【情感态度】 提高学生的观看、分析力量和对图形的感知水平. 【教学重点】 会求反比例函数的解析式. 【教学难点】 反比例函数图象和性质的运用. 教学过程 一、情景导入,初步认知 1.反比例函数有哪些性质?2.我们学会了依据函数解析式画函数图象,那么你能依据一些条件求反比例函数的解析式吗? 【教学说明】复习上节课的内容,同时引入新课.

2、 二、思索探究,猎取新知 1.思索:已知反比例函数y=的图象经过点P(2,4) (1)求k的值,并写出该函数的表达式; (2)推断点A(-2,-4),B(3,5)是否在这个函数的图象上; (3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化? 分析: (1)题中已知图象经过点P(2,4),即说明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了. (2)要推断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在. (3)依据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化状

3、况. 【归纳结论】这种求解析式的方法叫做待定系数法求解析式. 2.下列图是反比例函数y=的图象,依据图象,答复以下问题: (1)k的取值范围是k0还是k0?说明理由; (2)假如点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比拟y1,y2的大小.分析: (1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k0. (2)由于点A(-3,y1),B(-2,y2)是该函数图象上的两点且-30,-20.所以点A、B都位于第三象限,又由于-3-2,由反比例函数的图像的性质可知:y1y2. 【教学说明】通过观看图象,

4、使学生把握利用函数图象比拟函数值大小的方法. 中考数学教案学生篇2 1.2反比例函数的图象与性质 第1课时反比例函数的图象与性质(1) 教学目标 【学问与技能】 1.会用描点法画反比例函数图象;2.理解反比例函数的性质. 【过程与方法】 观看、比拟、合作、沟通、探究. 【情感态度】 通过对反比例函数的图象的分析,探究并把握反比例函数的图象的性质. 【教学重点】 画反比例函数的图象,理解反比例函数的性质. 【教学难点】 理解反比例函数的性质,并能敏捷应用. 教学过程 一、情景导入,初步认知 你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?

5、 【教学说明】在回忆与沟通中,进一步熟悉函数,图象的直观有助于理解函数的性质. 二、思索探究,猎取新知 探究1:反比例函数图象的画法画出反比例函数y=的图象.分析画出函数图象一般分为列表、描点、连线三个步骤. (1)列表:取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右匀称,对称地取值. (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等. (3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就

6、是反比例函数的图象. 思索: (1)观看上图,y轴右边的各点,当横坐标x渐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有一样的规律? (2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思索以下问题: (1)函数图形的两个分支分别位于哪些象限? (2)在每一象限内,函数值y随自变量x的变化是如何变化的? 【归纳结论】一般地,当k0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小. 探究3:反比例函数y=-的图象.可以引导学生采纳多种方式进展自主探究活动: (1)可

7、以用画反比例函数y=-的图象的方式与步骤进展自主探究其图象; (2)可以通过探究函数y=与y=-之间的关系,画出y=-的图象. 【归纳结论】一般地,当k0时,反比例函数y=的图象由分别在其次、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大. 探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征? 【教学说明】引导学生从通过与一次函数的图象的比照感受反比例函数图象“曲线”及“两支”的特征. 【归纳结论】反比例函数y=(k0)的图象是由两个分支组成的曲线.当k0时,图象在一、三象限;当k0时,图象在二、四象限.反比例函数y=与y=-(k

8、0)的图象关于x轴或y轴对称. 【教学说明】学生动手画反比函数图象,进一步把握画函数图象的步骤.观看函数图象,把握反比例函数的性质. 中考数学教案学生篇3 一、情境导入 如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁 先到达楼顶?假如AB和AB相 等而和 大小不同,那么它们的高度AC 和AC相等吗?AB、 AC、BC与,AB、AC、BC与之间有什么关系呢? - -导出新课 二、新课教学 1、合作探究 见课本 2、三角函数 的定义在RtABC中,假如锐角A确定,那么A的对边与斜边的比、邻边与斜边的比也随之确定. A 的对边与邻边的比叫 做A的正弦(sine),记作s inA,即s

9、in A= A的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即cosA= A的对边与A的邻边的比叫做A的正切(tangent) ,记作tanA,即 锐角A的正弦、余弦和正切统称A的三角函数. 留意 :sinA,cosA, tanA都是一个完整的符号,单独的 “sin”没有意义 ,其中A前面的“”一般省略不写。 师:依据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗 ? 师:(点拨)直角三角形中,斜边大于直角边. 生:独立思索,尝试答复 ,沟通结果. 明确:0sina1,0 p= cosa1. 稳固练 习:课内练习T1、作业题T1、2 3、如图,在RtABC中,C=90

10、,AB=5,BC=3, 求A, B的正弦,余弦和正切. 分析:由勾股定理求出AC的长度,再依据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。 师:观看以上 计算结果,你 发觉了什么? 明确:sinA=cosB,cosA=sinB,tanAta nB=1 4 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6 三、课 堂小结:谈谈今日 的收获 1、内容总结 (1)在RtA BC中,设C= 900,为RtABC的一个锐角,则 的正弦 , 的余弦 , 的正切 (2)一般地,在Rt ABC中, 当C=90时,sinA=cosB,cosA=sinB,tanAtanB=1 2、 方法归纳

11、在涉及直角三角形边角关系时, 常借助三角函数定义来解 中考数学教案学生篇4 一、素养教育目标 (一)学问教学点 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实. (二)力量训练点 逐步培育学生会观看、比拟、分析、概括等规律思维力量. (三)德育渗透点 引导学生探究、发觉,以培育学生独立思索、勇于创新的精神和良好的学习习惯. 二、教学重点、难点 1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实. 2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比拟、分析,得出结论. 三、教学步骤 (一)

12、明确目标 1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米? 2.长5米的梯子以倾斜角CAB为30靠在墙上,则A、B间的距离为多少? 3.若长5米的梯子以倾斜角40架在墙上,则A、B间距离为多少? 4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角CAB为多少度? 前两个问题学生很简单答复.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些学问.但后两个问题的设计却使学生感到怀疑,这对初三年级这些奇怪、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30角的直角三角形和等腰

13、直角三角形的学问是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的学问全部求出来. 通过四个例子引出课题. (二)整体感知 1.请每一位同学拿出自己的三角板,分别测量并计算30、45、60角的对边、邻边与斜边的比值. 学生很快便会答复结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特别直角三角形中,只要知道其中一边长,就可求出其他未知边的长. 2.请同学画一个含40角的直角三角形,并测量、计算40角的对边、邻边与斜边的比值,学生又快乐地发觉,不管三角形大小如何,所求的比值是固定

14、的.大局部学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗? 这样做,在培育学生动手力量的同时,也使学生对本节课要讨论的学问有了整体感知,唤起学生的求知欲,大胆地探究新知. (三)重点、难点的学习与目标完成过程 1.通过动手试验,学生会猜测到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活泼.对于这个问题,局部学生可能能解决它.因此教师此时应让学生绽开争论,独立完成. 2.学生经过讨论,或许能解决这个问题.若不能解决,教师可适当引导: 若一组直角三角形有一个锐角相等,可以把其 顶点A1,A2,A3重合

15、在一起,记作A,并使直角边AC1,AC2,AC3落在同一条直线上,则斜边AB1,AB2,AB3落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1B2C2B3C3,AB1C1AB2C2AB3C3, 形中,A的对边、邻边与斜边的比值,是一个固定值. 通过引导,使学生自己独立把握了重点,到达学问教学目标,同时培育学生力量,进展了德育渗透. 而前面导课中动手试验的设计,实际上为突破难点而设计.这一设计同时起到培育学生思维力量的作用. 练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来. (四)总结与扩展 1.引导学生作学问总结:本节课在复习勾股定理及含30

16、角直角三角形的性质根底上,通过动手试验、证明,我们发觉,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的. 教师可适当补充:本节课经过同学们自己动手试验,大胆猜想和积极思索,我们发觉了一个新的结论,信任大家的规律思维力量又有所提高,盼望大家发扬这种创新精神,变被动学学问为主动发觉问题,培育自己的创新意识. 2.扩展:当锐角为30时,它的对边与斜边比值我们知道.今日我们又发觉,锐角任意时,它的对边与斜边的比值也是固定的.假如知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重讨论这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正

17、、余弦概念有了初步印象,同时又激发了学生的兴趣. 四、布置作业 本节课内容较少,而且是为正、余弦概念打根底的,因此课后应要求学生预习正余弦概念. 中考数学教案学生篇5 教学目标 1, 把握有理数的概念,会对有理数根据肯定的标准进展分类,培育分类力量; 2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义; 3, 体验分类是数学上的常用处理问题的方法。 教学难点 正确理解分类的标准和根据肯定的标准进展分类 学问重点 正确理解有理数的概念 教学过程(师生活动) 设计理念 探究新知 在前两个学段,我们已经学习了许多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在

18、草稿纸上任意写出3个数(同时请3个同学在黑板上写出). 问题1:观看黑板上的9个数,并给它们进展分类. 学生思索争论和沟通分类的状况. 学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应赐予引导和鼓舞. 例如, 对于数5,可这样问:5和5. 1有一样的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不行以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,.(由于小数可化为分数,以后把小数和分数都称为分数) 通过教师的引导、鼓舞和不断完善,以及学生自己的概括,最终归纳出我们已经学过的5类不同的数,它们

19、分别是“正整数,零,负整数,正分数,负分数,. 根据书本的说法,得出“整数”“分数”和“有理数”的概念. 看书了解有理数名称的由来. “统称”是指“合起来总的名称”的意思. 试一试:根据以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是根据整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参加 学生自己尝试分类时,可能会很粗略,教师赐予引导和鼓舞,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。 有理数的分类表要在黑板或媒体上展现,分类的标准要引导学生去体会 练一练 1,任意写出三个有理数,并说出是什么类型

20、的数,与同伴进展沟通. 2,教科书第10页练习. 此练习中消失了集合的概念,可向学生作如下的说明. 把一些数放在一起,就组成了一个数的集合,简称“数集”,全部有理数组成的数集叫做有理数集.类似地,全部整数组成的数集叫做整数集,全部负数组成的数集叫做负数集; 数集一般用圆圈或大括号表示,由于集合中的数是无限的,而此题中只填了所给的几个数,所以应当加上省略号. 思索:上面练习中的四个集合合并在一起就是全体有理数的集合吗? 也可以教师说出一些数,让学生进展推断。 集合的概念不必深入绽开。 创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么? 教学时,要让学生总结已经学过的数,鼓舞学生概括,

21、通过沟通和争论,教师作适当的指导,逐步得到如下的分类表。 有理数 这个分类可视学生的程度确定是否有必要教学。 应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参与分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等 小结与作业 课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进展分类,标准不同,分类的结果也不同。 本课作业 1, 必做题:教科书第18页习题1.2第1题 2, 教师自行预备 本课教育评注(课堂设计理念,实际教学效果及改良设想) 1,本课在引人

22、了负数后对所学过的数根据肯定的标准进展分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进展简洁的分类是数学力量的表达,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准确实定可向学生作适当的渗透,集合的概念比拟抽象,学生真正承受需要很长的过程,本课不要过多绽开。 2,本课具有开放性的特点,给学生供应了较大的思维空间,能促进学生积极主动地参与学习,亲自体验学问的形成过程,可避开直接进展分类所带来的枯燥性;同时还表达合作学习、沟通、探究提高的特点,对学生分类力量的养成有很好的作用。 3,两种分类方法,应以第一种方法为主,其次种方法可

23、视学生的状况进展。 中考数学教案学生篇6 一、教学内容分析 1.2有理数1.2.2数轴。这一节是初中数学中特别重要的内容,从学问上讲,数轴是数学学习和讨论的重要工具,它主要应用于肯定值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的根底,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了肯定的根底。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的根底。 二、学生学习状况分析 (1)学问把握上,七年级的学生刚

24、刚学习有理数中的正负数,对正负数的概念理解不肯定很深刻,很多学生简单造成学问遗忘,所以应全面系统的去叙述; (2)学生学习本节课的学问障碍。学生对数轴概念和数轴的三要素,学生不易理解,简单造成画图中掉三落四的现象,所以教学中教师应予以简洁明白、深入浅出的分析; (3)由于七年级学生的理解力量和思维特征和生理特征,学生的好动性,留意力简单分散,爱发表见解,盼望得到教师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的留意力始终集中在课堂上;另一方面要制造条件和时机,让学生发表见解,发挥学生的主动性。 三、设计思想 从学生已有学问、阅历动身讨

25、论新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要仔细分析它的作用,使学生从直观熟悉上升到理性熟悉。直线、数轴都是特别抽象的数学概念,固然对初学者不宜讲的过多,但适当引导学生进展抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。 四、教学目标 (一)学问与技能 1、把握数轴的三要素,能正确画出数轴。 2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。 (二)过程与方法 1

26、、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。 2、对学生渗透数形结合的思想方法。 (三)情感、态度与价值观 1、使学生初步了解数学来源于实践,反过来又效劳于实践的辩证唯物主义观点。 2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。 五、教学重点及难点 1、重点:正确把握数轴画法和用数轴上的点表示有理数。 2、难点:有理数和数轴上的点的对应关系。 六、教学建议 1、重点、难点分析 本节的重点是初步理解数形结合的思想方法,正确把握数轴画法和用数轴上的点表示有理数,并会比拟有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含

27、两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不行,二是这三个要素都是规定的。另外应当明确的是,全部的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步把握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下根底。 2、学问构造 有了数轴,数和形得到了初步结合,这有利于对数学问题的讨论,数形结合是理解数学、学好数学的重要思想方法,本课学问要点如下: 定义规定了原点、正方向、单位长度的直线叫数轴 三要素原点正方向单位长度 应用数形结合 七、学法引导 1、教学方法:依据教师为主导,学生为主体的原则,始终贯穿“激发情趣手脑并用启发诱导反应矫正”的教学方

28、法。 2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。 八、课时安排 1课时 九、教具学具预备 电脑、投影仪、三角板 十、师生互动活动设计 讲授新课 (出示投影1) 问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度. 师:三个温度计所表示的温度是多少? 生:2,-5,0. 问题2:在一条东西向的公路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组争论,沟通合作,动手操作) 师:我们能否用类似的图形表示有理数呢? 师:

29、这种表示数的图形就是今日我们要学的内容数轴(板书课题). 师:与温度计类似,我们也可以在一条直线上画出刻度,标上读 数,用直线上的点表示正数、负数和零.详细方法如下 (边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假如所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0); 2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,

30、-3, 师问:我们能不能用这条直线表示任何有理数?(可列举几个数) 让学生观看画好的直线,思索以下问题: (出示投影2) (1)原点表示什么数? (2)原点右方表示什么数?原点左方表示什么数? (3)表示+2的点在什么位置?表示-1的点在什么位置? (4)原点向右0.5个单位长度的A点表示什么数? 原点向左1.5个单位长度的B点表示什么数? 依据教师画图的步骤,学生思索在一条水平的直线上都画出什么?然后归纳出数轴的定义. 师:在此根底上,给出数轴的定义,即规定了原点、正方向和单 位长度的直线叫做数轴. 进而提问学生:在数轴上,已知一点P表示数-5,假如数轴上的原点不选在原来位置,而改选在另一位

31、置,那么P对应的数是否还是-5?假如单位长度转变呢?假如直线的正方向转变呢? 通过上述提问,向学生指出:数轴的三要素原点、正方向和单位长度,缺一不行. 【教法说明】 通过“观看类比思索概括表达”呈现学问的形成是从感性熟悉上升到理性熟悉的过程,让学生在猎取学问的过程中,领悟数学思想和思维方法,并有意识地训练学生归纳概括和口头表达力量. 师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习 尝试反应,稳固练习 (出示投影3).画出数轴并表示以下有理数: 1、1.5,-2.2,-2.5,0. 2.写出数轴上点A,B,C,D,E所表示的数: 请大家答复以下问题: (出示投影4) (1)有人说

32、一条直线是一条数轴,对不对?为什么? (2)以下所画数轴对不对?假如不对,指出错在哪里? 【教法说明】 此组练习的目的是稳固数轴的概念. 十一、小结 本节课要求同学们能把握数轴的三要素,正确地画出数轴,在此还要提示同学们,全部的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再讨论. 十二、课后练习习题1.2第2题 十三、教学反思 1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和承受,让学生通过观看、思索和自己动手操作、经受和体验数轴的形成过程,加深对数轴概念的理解,同时培育学生的抽象

33、和概括力量,也体出了从感性熟悉,到理性熟悉,到抽象概括的熟悉规律。 2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特别到一般,数形结合的数学思想方法。 3、留意从学生的学问阅历动身,充分发挥学生的主体意识,让学生主动参加学习活,并引导学生在课堂上感悟学问的生成,进展与变化,培育学生自主探究的学习方法。 中考数学教案学生篇7 为了加强课堂教学,完善教学常规,能够保证教学的顺当开展,完成初中最终一学期的数学教学,使之高效完成学科教学任务制定了本教学规划。 一、学情分析 经过前面五个学期的数学教学,学生的数学根底和学习态度已经明晰可见。通过上个学期屡次摸底测试及期末检测发觉,学生的最大的特点

34、是两极分化现象极为严峻。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩非常低下,厌学心情特别严峻,根本放弃对数学的学习了;其次是局部中等学生对前面所学的一些根底学问记忆不清,把握不牢。 二、指导思想 坚持贯彻党的教育方针,连续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进展讨论,积极探究高效的复习途径,夯实学生数学根底,提高学生做题解题的力量,和解答的精确性,以期在中考中取得优异的数学成绩。 三、教学目标 教育学生把握根底学问与根本技能,培育学生的规律思维力量、运算力量、空间观念和解决简洁实际问题的力量,使

35、学生逐步学会正确、合理地进展运算,逐步学会观看分析、综合、抽象、概括。会用归纳演绎、类比进展简洁的推理,使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培育学生具有良好的学习习惯,实事求是的态度,坚韧的学习毅力和独立思索、探究的新思想,培育学生应用数学学问解决问题的力量。 四、方法措施 1、从学生实际状况动身,仔细钻研教材教法,细心设置教学情境和教学内容,做到层次清楚,帮忙学生理清思路,建立数学严密的数学规律推理力量。 2、搞好单元复习测试工作,做好阅卷分析,发觉问题准时订正,同时加大课后对学生的辅导力度。 3、针对近年中考命题趋势,制定具体而周密的复习规划,备好每一节复习

36、课,力求全面而又突出重点。 4、帮忙学生建立良好的数学解题作答习惯,向学生传授必要的作答技巧和适应中考的力量。 五、教学措施: 在教学过程中抓住以下几个环节 (1)仔细备课:仔细讨论教材及考纲,明确教学目标,抓住重点、难点,细心设计教学过程,重视每一章节内容与前后学问的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。 (2)上好课:在备好课的根底上,上好每一个45分钟,提高40分钟的效率,让每一位同学都听的懂,对局部根底较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。 (3)注意课后反思,准时的将一节课的得失记录下来,不断积存教学阅历。 (4)按时检验

37、学习成果,做到单元测验的有效、准时。考后对典型错误利用学生想立刻知道答案的心理马上点评。 (5)准时指导、纠错:争取面批、面授,今日的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反应,精选适当的练习题、测试卷,准时批改作业,发觉问题准时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。 (6)分层辅导,因材施教 对本年级的学生实施分层辅导,利用培优补差的方法,鼓励学生的学习激情,保证升学率及优良率,提高及格率。对局部差生实行义务补课,以提高成绩。 (7)严格根据教学进度,有序的进展教学工作。 专心去做,从细节去做,尽自己追大的努力,发挥自己最大的力量去做

38、好初三毕业班的教学工作。 六、教学课时安排: 1、第1周,讲评期末考试,完成九年级下后一章的教学任务,并完成测验、分析、讲评。 2、第2周至第9周,围绕初中数学学科“根本要求”进展第一轮总复习,使学生把握每个章节的学问点,娴熟解答各类根底题,对每个章节进展测验,检测学生把握程度,促进学问稳固,力求做到人人过关。 3、第10周至第12周,其次轮总复习,综合练习,分层提高阶段,力求使不同层次的学生都能得到进展,最终对初中数学“六大块”主要内容进展专题复习和训练,促师生潜能开发,使学生的数学学问与构造得以纵深进展。 4、第13周至第16周,综合模拟训练,考前方法与心理的培训,使学生能有一个良好、安康的心理,平和的心态参与“升学考试”力争使每一个学生发挥出最正确水平,取得最好成绩。 七、教研专题: 附教学进度 第1周第十九章投影与视图 第2周-第3周数与式 第4周方程与不等式(组) 第5周函数与其图像 第6周图形的熟悉与三角形 第7周四边形 第8周圆 第9周-图形变换,统计与概概率 第10周专题一 第11周专题二、三 第12周-第16周综合模拟训练

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁