111集合的含义和表示课件.ppt

上传人:s****8 文档编号:94881386 上传时间:2023-08-10 格式:PPT 页数:16 大小:302.50KB
返回 下载 相关 举报
111集合的含义和表示课件.ppt_第1页
第1页 / 共16页
111集合的含义和表示课件.ppt_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《111集合的含义和表示课件.ppt》由会员分享,可在线阅读,更多相关《111集合的含义和表示课件.ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.正整数正整数1,2,3,;2.中国古典四大名著中国古典四大名著;3.高一高一10班的全体学生班的全体学生;4.我校篮球队的全体队员我校篮球队的全体队员;5.到线段两端距离相等的点到线段两端距离相等的点.集集 合合 一般地,一般地,指定的指定的某些对象的全体称为集合,某些对象的全体称为集合,简称简称“集集”.1.集合的概念集合的概念:集合中每个集合中每个对象对象叫做这个集合的叫做这个集合的元素元素.练习练习1.下列指定的对象,能构成集合的是下列指定的对象,能构成集合的是()很小的很小的数数 不超过不超过 30的非负实数的非负实数 直角坐标平面的横坐标与纵坐标相等的点直角坐标平面的横坐标与纵坐

2、标相等的点 的近似值的近似值 高一年级高一年级优秀的优秀的学生学生 所有无理数所有无理数 大于大于2的整数的整数 正三角形全体正三角形全体A.B.B.C.D.集合常用集合常用大写大写字母表示,元素常用字母表示,元素常用小写小写字母表字母表示示.2.集合的表示集合的表示:若若a是集合是集合A的元素,则的元素,则a属于集合属于集合A,记作,记作aA.3.集合与元素的关系集合与元素的关系:例如:若例如:若A表示方程表示方程x21的解,则的解,则 2 A,1A.若若a不是集合不是集合A的元素,则的元素,则a不属于集合不属于集合A,记作,记作a A.确定性确定性:集合中的元素必须是集合中的元素必须是确定

3、确定的的.即即:xA与与x A必居其一必居其一.互异性互异性:集合的元素必须是集合的元素必须是不相同不相同的的.如如:方程方程 x2 x 0的解集为的解集为1,而非而非1,1.无序性无序性:集合中的元素是集合中的元素是无先后顺序无先后顺序的的.如如:1,2,2,1为同一集合为同一集合.问题:问题:(1,2),(2,1)是否为同一集合是否为同一集合?4.集合元素的性质集合元素的性质:5.集合的表示方法集合的表示方法:问题问题1:用集合表示:用集合表示 x230的解集的解集;所有大于所有大于0小于小于10的奇数的奇数;不等式不等式2x13的解的解.描述法、列举法、图表法描述法、列举法、图表法 显然

4、这个集合显然这个集合没有元素没有元素.我们把这样的集合我们把这样的集合叫做空集,记作叫做空集,记作.6.集合的分类集合的分类:有限集、无限集有限集、无限集 问题问题2:我们看这样一个集合:我们看这样一个集合:x|x2x10,它有什么特征?,它有什么特征?练习练习2:0 (填填或或)0 (填或填或)7.重要的数集重要的数集:N:自然数集:自然数集(含含0)N+:正整数集:正整数集(不含不含0)Z:整数集:整数集Q:有理数集:有理数集R:实数集:实数集例例1若若xR,则数集,则数集1,x,x2中元素中元素x应满应满足什么条件足什么条件.解:解:x1且且x21且且x2x,x1且且x1且且x0.例题例

5、题例例2 设设xR,yR,观察下面四个集合,观察下面四个集合 A yx21 B x|yx21 C y|yx21 D(x,y)|yx21 它们的含义相同吗它们的含义相同吗?例例3 若方程若方程x25x60和和x2x20的解为元的解为元素的集为素的集为M,则,则M中元素的个数为中元素的个数为 ()A.1 B.2 C.3 D.4例例4已知集合已知集合Ax|ax24x40,xR,aR只有一个元素,求只有一个元素,求a的值与这个元素的值与这个元素.解:当解:当a0时,时,x1.当当a0时,由时,由 1644a0.得得a1.此时此时x2.a1时这个元素为时这个元素为2.a0时这个元素为时这个元素为1.1.教科书教科书5面练习第面练习第1、2题题2.教科书教科书11面习题面习题1.1第第1、2题题1.集合的定义集合的定义2.集合元素的性质集合元素的性质3.集合与元素的关系集合与元素的关系4.集合的表示集合的表示5.集合的分类集合的分类教科书教科书12面习题面习题1.1第第3、4题题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁