2023年高三教学质量检测卷文科数学试题.pdf

上传人:奔*** 文档编号:94344610 上传时间:2023-07-30 格式:PDF 页数:13 大小:2.33MB
返回 下载 相关 举报
2023年高三教学质量检测卷文科数学试题.pdf_第1页
第1页 / 共13页
2023年高三教学质量检测卷文科数学试题.pdf_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《2023年高三教学质量检测卷文科数学试题.pdf》由会员分享,可在线阅读,更多相关《2023年高三教学质量检测卷文科数学试题.pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、姓名:准考证号:out 8卜 一 笨 题 无 数)2023年高三教学质量监测卷文科数学说 明:1 .全 卷 满 分150分.考试时间】2 0分钟.2.全卷分为试题卷和答题卡.答案要求写在答题卡上.不得在试卷上作答,否则不给分.一、选 择 题:本 题 共12小题,每 小 题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合 A=.rl J-3 2.r 3 03=集|7+3V0),则 A AB=A.(-c o.-3)B.(-1.3)C.(-3.-1)D.(3.+oo)2.若 复 数 h满足(2+i)t=4+i.其 中i为虚数单位,则z的共规复数的虚部是A-f口 2 Cr

2、-V2.D.2z 1了 +220 3.若实数工口,满足约束条件.r+、:_4 log 则下列不等式一定成立的是A.B.log-,(a-6)0 C.5U*1 D.acbc5.设 nW R.则“12了-11 4产是&+才一2&o”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已 知S是数列彳a.的 前“项和.且满足首项为1|=4S“十1 .则u:-A.4X5:冈 B.52021 C.4 X 5:l::D.S7.已知定义在R上的偶函数人才)满 足 人 丁-4)二 一八工),且当工。,2)时./(工)=2,-1.则下列说法错误的是A./(5)=-1B.函 数 力 关于

3、直线_r=4对称C.函 数/(了+2)是偶函数D.关 于r的方程八了)-2=0在区间-2,2 :所有根的和为。8.将 函 数kcos r c o s l+p的图象沿?轴向左平移“(a 0)个单位K度 后,得 到 的 函 数图象关于V轴对称,则a的最小值为A 5n K 77rA-12 BT211冗 n 137rC -yy D-jy9.如图是一个几何体的三视图,则该几何体的体积为4A.2B.-yc D.4,3俐视图文科数学试题 第1页(共4页)I o.定 义:圆钳 曲线(,:1 +;1的两条 相”.垂门.的切线的交点Q的轨迹是以坐.标原点为圆2 2心,T 为半径的圆.这个圆称为蒙日圆 已 知 椭

4、圆 的 方 程 为 彳+号=1,”是直线/仃+23=0卜的一点过点作椭圆(,的 两 条 切 线 与 椭 网 相 切 于M,N两 点,。是坐标 原 点,连 接OP 当/M P N为直角时.则际步 =A.4 4 B.5或0 C.-1或号 D.-寺 或011.在 三 棱 锥P A BC中,已 知 人 ”2 E,八(=/n,P八8 河则 三棱锥P A B C外接球的表面积为A.777r B.64K C.1087r D.72k12.定 义 在 区 间(4.)卜的可导函数/(I)关 干.V轴 对 称,当r 6(0.弓 了f,/(.r)cos r/(1),/(.r)sin(一)恒成立.则不等式/(,)一一舄

5、:-0的解集为A-(-f f)B.(/旬 C堡)D.(O,f)二、填 空 题:本 题 共4小题,每 小 题5分,共20分.13.某高三年级一 共 有800人.要从中随机抽取5 0人 参 加 社 团 比 赛.按 系 统 抽 样 的 方 法进行等距抽取.将全体学生进行编号分别为1800,并 按 编 号 分 成50组,若 第3组 抽 取 的编号为36.则 第16组抽取的编号为.14.已知两个向量a.b.g =2.=1 e +6=(2,由),则当|1 +力|取得最小值时.6=.15.已 知 某 公 交 车7:25发车.为了 赶上该 公交 车 小 张每次 都是 在7:207:2 5之 间 到 达 公 交

6、站 台.则 他 连 续 两 天 提 前 到 公:站台等待累计时长超过3分钟的概率为.16.已 知 抛 物 线C:/=2A Z过 点E(4,4),直 线/:Z=岛+与 抛 物 线C交 于A,B两点(不同于 点E),则抛物线的焦点F的坐标为;若 点D(,0)A。|D B|=6 4.则n-_.三、解 密 题 疏 方 品 解答应写出文字说明、证 明 过 程 或 演 算 步 骤.第172 1题 为 必 考 题,每个试题考生都必须作答.第22.23题为选考 题,考生根据要求作答.(一)必考题:共60分.17.(12 分)如 图 是 某 市2016年 至2022年农村居民人均可支配收入(单位:万元)的折线图

7、.注:年份代码17分别对应2016年2022年.(1)根据图表的折线图数据,计 算y与,的 相 关 系 数 并 判 断、与/是 否 具 有 较 高 的 线 性相关程度(若0.3 0 4 6|0 ,b Q,且 3 a (-1)=/?(1 ,证 明;1 3(1)H =+3 6;a b(2)“泊后十3a件22隐.文科数学试题 第 4 页学与4 页)2023年高三文科数学质监测卷参考答案一、选择题1 .【答案】A【解析】由题意,得2 =3 ,B -xx -3 ,所以4n B=x|x logs。可知la b 0,所以A 错误;a-b0,但无法判定a-b 与 1 的大小,所以B错误;当c 0 时,D错误;

8、5。-卜 1 可以转变为5 所 5,由a-b 0,C正确.5 .【答案】A【解 析】由|2 x-l|4x 得 尸 一 玲。或解得由x 2+x-2 4 0 解得2 x -1 x,-2 x +1 /(x)sin(-x),化简彳哥(x)cosx+.f(x)sinx 0,构造函数网F(x)=/V)cosx+/(x)sinxCOSX COS X即当时,尸(x)0,尸(x)单 调 递 增,/(-X)所 以 由/(x)-0=f(x)tanxrr n/1:/丁幻0 x)-A-7-A -7 tan x cos x sin x cos(x)cos(x)jr(兀、即2 x)2工-x).因 为/(x)为 偶 函 数

9、且 在xe 0,-上 单 调 递 增,2 2 J2023年文科数学参考答案37171-x ,22h o.所以-7-1-7-1-X71-X2填空题13.【答 案】244【解析】800人一共分成50组,每 组16人,所以组距为1 6,系统抽样可以看成是一个组距为16的等差数列,由第三组/=36可 得 与=24414.【答 案】加=一1【解析】由题意可得|a+b|=|a|+|b|+2a-b=y/l,则。电=1,所以a+mb=yla+m2h+2ma-h-7nT+2/77+4=-/(m+1)2+3,所以加=-l.15.【答 案】50【解析】设小张每天等待的时长都在0-5分钟之内,连续两天等待的时长分别为

10、x,y,则4 作 出 不 等 式 组 所 表 示 的 可 行 域,如 图 所 示,根 据 题 意 可 知0 y 3,x=3y+n,所以凹+多=4瓜 yy2=-4 ,卜(一?)(?一)一,为=彳(,+%)2 一,%=|1 6|=6 4,所以=4.因为 3,所以=4.三、解答题1 7.解:(1)由折线图中的数据和附注中的参考数据,可得7 =4,-)=2 8,2 分/=17 7 17 Z-7E%=9.7 3,=4 1.7 2,枢(乂 一 耳飞 0.5 5,/=1/=!V/=17 _ 7 工(/,一川乂7)=2 m 7)=4 1.7 2-4 x 9.7 3=2.8,.4 分/=1 X/=1所以F-X

11、0.9 6.因为r近似为0.9 6,所以7 与f 的线性相关程度较高.6 分0.5 5 x 2 x 2.6 4 6 由 知,y 与/的相关系数近似为0.9 6,说明了与/的线性相关程度较高,从而可以用线性回归模型拟合丁与f 的关系.79 7 3 2(右-。(必-歹)2 8由歹=*=1.3 9 及(1)得b=-=0.1 0,.!7/=1。二歹一行=L39-0.10X4=0.99,所以 关于f 的回归方程为y =0.1 04-0.9 9.9 分因为 2,所以0.1 0f +0.9 9 2,1 0.1,.1 1 分所以到2 02 6 年该市农村居民人均可支配收入超过2 万 元.1 2 分1 8.解:

12、若 B=C,则2 8 二 4-4.1 分因为c os(B-C)c os/+c os2 4=l+c os(5+C)cosA,所以c os/+c os2 4=1+c os(T C-A)cosAt.3 分整理得3 c os2/+c os A-2 =0,AG(09 TT).4 分7解得c os4 =-l(舍),c osA=.6 分3(2)因为 c os(5 -C)c os A+c os 2/=1 +c os(5 +C)c os A,所 以 c os(5 C)c os(5 +C)c os A=l-c os 24.7 分2023年文科数学参考答案5整理得 2 si n Bsi n Cc osA=2 si

13、n 2/,.9 分由正弦定理得2 bc c osA=2/,.1 0分由余弦定理得+/=2/,.分所以b2+c2 =3.1 2分a1 9.解:(1)因为Z8 CD为菱形,所以/C _L 8 D 又因为N C,PB,PB n B D=B,所以/C_L平面P S D.3分因为PD u平面05 0,所以尸0 _L/C.又由已知P。_L OC,/C c=C,所以尸。1.平面Z 8 C D.6分 因 为 为 尸。的中点,所以点P到平面M C 8的距离等于点0到平面0 c B的距离.-7分由 知,尸0_1平面/88,所以S BD=;B D PD =2 芯.又因为/8/。=6 0,所以8。=2,所以P D =

14、2#.9分设点。到平面6 c M的距离为4,所以嗫=匕,_8 3.因为43 8 =G,所以 VM_B C D=乱c o,M D=&.1 0 分因为&BCM=3,所以勿-B C M=gsmC M,d=,所以4 二五.1 2分2 0.解:(1)陶(叶 乂),5(X2,%),贝的由题意得4-4=La:晨所以2 2区-匹=1,L2 b22 2 2 2x 一不 乂 一五0.所以e B 自=/,即.3分/b22分解得e=也.25分因为双曲线的右顶点N。),所以双曲线C 的 标 准 方 程 为 L 6 分3因 为.e所以直线/的斜率一定存在设直线/的方程为y =Ax +阳,y=kx+m,所以/所以(3-4左

15、2),一8所优4 m 2-1 2 =0(3 4/。0),T-T=1,2023年文科数学参考答案6所以 =6 4/加 2 _ 4(3 4 左 2 )(4 加2 1 2)0,即/一 4/+3 0,所以二口再*2 =-A m2-U3-4 k27分因为以4?为直径的圆经过点N,所以NA上NB,所 以 福.标=0.8 分又 因为 N A=(须一 2,yJ,N B=(x2-2,y2),所以N A.N B =(%)-2)(x2 2)+yxy2=xxx2-2(玉 +x2)+4+yly2=0.又因为必必=(脑+m)(kx2+m)-k2xx2+km(x+x2)+m2,所 以 丽-N B =(k2+l)x,x2+(

16、km-2)(x,+x2)+m2+4 =0,an,2,、-4w 1 2 8 km 2 A n即(左 一+1)x-卜(km-2)x -+m +4 =0,3 4 左 2 3 4 左 2化简得加2 +16km+2 8公=0,即筒+1 4 )(m +2 4)=0,解得?=-1 4%或;=-2%,且均满足72-4 尸+3 0,.1 0分当?=-2 4 时,=丘-2 左=左。一2).因为直线/不过定点N(2,0),故舍去;当加=-1 4 4时,y=kx-4k=k(x-4),所以直线/恒过定点E(1 4,0).综上所述,直线/恒过定点(1 4,0).1 2 分2 1 .解:(1)若加=0时,/(x)=X -1

17、 J(x)在 区 间 1,2 上 单 调 递 减,所 期(X)m a x =-2.1 分若?0,则对称轴x =-,m当 上 生 43,即加之乙时,1 离 对 称 轴 近,2 离 对 称 轴 远,m 2 5所以/(X)m a x=/(2)=4 加一3.3 分2023年文科数学参考答案7当 蜉|,即。加|时,璃对称轴远,2离对称轴近,3/O O m a x =/(1)=?-2.4分若?0,对称轴X =匕 ,综上,/(X)俏x=L:.6分max gm -2,m.1 2 5(2)因为/(x)2 1 n x恒成立,即I n x-;加/+(1-加)x +l 0,所以G(x)0,所以G(x)在(0,+8)上

18、是单调递增函数.a又因为G 6 =-;m+2 0,所以关于x 的不等式G(x)WO不能恒成立.8 分当?0时,令 G,(x)=O 得 x=T,所以当内(0小 时,G(x)0;当 x e(、,+8)时,G(x)0,A(2)=-ln 2 0.2m24又因为人(加)在”?e(0,+8)上是减函数,所以当加2:2 时,/?(w)0.11分所以整数机的最小值为2.12分选修4-4:坐标系与参数方程2023年文科数学参考答案822.解:(1)由/9cos(6-;J+加=0,得7a111夕 +05。+2加=0.由 F =cosa 得 X +用+2 加=0.5分.y=psin 09Y-/ccq t(2)因为曲线C的参数方程为 一%为参数),y=2sin/将其代入直线/:x+yfiy+2m=0,cos t+y/3 sin t+m-0,.7分T T所以=2sinQd),所以一2 -m 2,B P -2 /n 0,b0,所以36+a=+.5分a bi 3(2)由 得 36+。=+工a h所以弘+4=工+3 2 翌,当且仅当6=3十寸,等号成立.8分a b yjab3 1 J _ 3所以a 2 b2 +3a 2 加 2 2 6.10分2023年文科数学参考答案9

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁