《西方经济学_微观部分第四版课后答案高鸿业.pdf》由会员分享,可在线阅读,更多相关《西方经济学_微观部分第四版课后答案高鸿业.pdf(114页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、西方经济学(微观部分)课后习题答案详解高鸿业第四版目录 微观经济学(高鸿业第四版)第 二 章 练 习 题 参 考 答 案.2 微观经济学(高鸿业第四版)第 三 章 练 习 题 参 考 答 案.16 微观经济学(高鸿业第四版)第 四 章 练 习 题 参 考 答 案28 微观经济学(高鸿业第四版)第 五 章 练 习 题 参 考 答 案.34 微观经济学(高鸿业第四版)第 六 章 练 习 题 参 考 答 案44 微观经济学(高鸿业第四版)第 七 章 练 习 题 参 考 答 案60 微观经济学(高鸿业第四版)第 八 章 练 习 题 参 考 答 案.76 微观经济学(高鸿业第四版)第 九 章 练 习 题
2、 参 考 答 案84 微观经济学(高鸿业第四版)第 十 章 练 习 题 参 考 答 案.901 微观经济学(高鸿业第四版)第二章练习题参考答案Z已知某一时期内某商品的需求函数为a=50-5P,供给函数为Q=1(W(1)求均衡价格R和均衡数量Q,并作出几何图形。(2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Oi H R求出相应的均衡价格E和均衡数量Q,并作出几何图形。(3)假定需求函数不变,由于生产技术水平提高,使供给函数变 为Q=*R求出相应的均衡价格R和均衡数量Q,并作出几何图形。(4)利 用(1)(2)(3),说明静态分析和比较静态分析的联系和区别。(5)利 用(1)(2)
3、(3),说明需求变动和供给变动对均衡价格和均衡数量的影响.摩冬;(D将需求函数。=50-5肉口供给函数Q-1 H 5 P代入均衡条件有:50-5P=-10H-5P得:Pe=62以均衡价格P e =6代入需求函数d=5 0-5 p,得:O=5 0-5 X 6=2 0或者,以均衡价格P e i 代入供给函数Q=l(mP,得:O-1 0+-5 X 6=2 0所以,均衡价格和均衡数量分别为P e =6 ,0=20 如图 I所示.将由于消费者收入提高而产生的需求函数Q=6 0-5 p和原供给函数Q 1叶5只代入均衡条件Q M 2 ,有:6 0-5 P=-1 0=5 P得 P e=7以均衡价格P-7代入O
4、 W 0-5 P ,得O=6 0-5 X 7=2 5或者,以均衡价格P日 代 入Q 1叶5P得O 1 C H-5 X 7=2 5所以,均衡价格和均衡数量分别为P07,0=2 5($将原需求函数Q=5 O-5 p和由于技术水平提高而产生的供给函数Q-5+-5 p,代入均衡条件QW,有:5 O-5 P-H-5 P得 P 5.5以均衡价格P k 5.5代入O=5 0-5 p,得O=5 0-5 X 5.5=2 2 53或者,以均衡价格P e=5.5代入Q =*P,得Q3=-5+5X 5.5=2 2 5所以,均衡价格和均衡数量分别为P15.5,0=2 2.5.如图1一所示.所谓静态分析是考察在既定条件下
5、某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(D为例,在 图1T中,均衡点E就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数Q 1叶5界口需求函数Q=5 0-5 p表示,均衡点E具有的特征是:均衡价格PN且 当PN时,有同时,均衡数量 0=2 0,且 当0=2 0时,有P印个.也可以这样来理解静态分析:在外生变量包括需求函数的参数0 0,5)以及供给函数中的参数6 1 0,5给定的条件下,求出的内生变量分别为P-0=2
6、0.依此类推,以上所描素的关于静态分析的基本要点,在 及 其 图1 2和及其 图1 3中的每一个单独的均衡点耳(1,2)都得到了体现.而所谓的比较静态分析是考察当所有的条件发生变化时,原有的均衡状态会发生什么变化,并分析比较新旧均衡状态.也可以说,比较静态分析是考察在一个经济模型中外生变量变化时对内生变量的影响,并分析比较由不同数值的外生变量所决定的内生变量的不同数值,以为例加以说明.在图1 2中,由均衡点变动到均衡点,就是一种比较静态分析.它表示当需求增加即需求函数发生变化时对均衡点的影响.很清楚,比较新.旧两个均衡点和可以看到:由于需求增加由2 0增4加 为 2 5.也可以这样理解比较静态
7、分析:在供给函数保持不变的前提下,由于需求函数中的外生变量发生变化,即其中一个参数值由5 0 增加为6 0,从而使得内生变量的数值发生变化,其结果为,均衡价格由原来的6上 升 为 7,同时,均衡数量由原来的2 0 增 加 为 2 5.类似的,利 用 6)及 其 图 1 3 也可以说明比较静态分析方法的基本要求.(5)由(1)和(2)可见,当消费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价格提高了,均衡数量增加了.由(D 和(3)可见,当技术水平提高导致供给增加,即表现为供给曲线右移时,均衡价格下降了,均衡数量增加了.总之,一般地有,需求与均衡价格成同方向变动,与均衡数量成同方向变
8、动;供给与均衡价格成反方向变动,与均衡数量同方向变动.2 假 定 表 2 5 是需求函数Q=5 0 0-1 0 0 P 在一定价格范围内的需求表:某商品的需求表价格(元)12345需求量4 0 03 0 02 0 01 0 00(1)求 出 价 格 2 元 和 4 元之间的需求的价格弧弹性。5(2)根据给出的需求函数,求 氏2是的需求的价格点弹性。(3)根据该需求函数或需求表作出相应的几何图形,利用几何方法求出42时的需求的价格点弹性。它 与(2)的结果相同吗?廨(1)根据中点公式e d =一 +苦,有:e d =3 1岛1 0 0 =1 52Z0 由于当 42时,0=5 0 0-1 0 0
9、X 2=3 0 0,所以,有:(3)根据图1 T在a点即,42时的需求的价格点弹性为:G B 2或者.=与=:显然,在此利用几何方法求出42时的需求的价格弹性系数和(2)中根据定义公式求出结果是相同的,都 是ed-o人 假定下表是供给函数Q-2+2 P在一定价格范围内的供给表。某商品的供给表价格(元)23456供给量24681 0(1)求出价格3元 和5元之间的供给的价格弧弹性。(与 根据给出的供给函数,求43时的供给的价格点弹性。6(3)根据该供给函数或供给表作出相应的几何图形,利用几何方法求出旧时的供给的价格点弹性。它 与(2)的结果相同吗?解(D根 据 中 点 公 式=-邛 更 正,有:
10、Z.3+54 2 4ed=-2,4 t 8=5-2 由 于 当 时,Q=2+2,所以O r Q 4 根据图1-5,在a点即 氏3时的供给的价格点弹性为:Eg*=1.58 O B显然,在此利用几何方法求 出 的PW时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都 是E s=l.54图中有三条线性的需求曲线A B A;(1)比 较&h c三点的需求的价格点弹性的大小。(2)比 较a e三点的需求的价格点弹性的大小。解(D 根据求需求的价格点弹性的几何方法,可以很方便地推知:分别处于不同的线性需求曲线上的a b,e三点的需求的价格点弹性是相等的.其理由在于,在这三点上,都有:FF
11、0Ed=AF7(2 根据求需求的价格点弹性的几何方法,同样可以很方便地推知:分别处于三条线性需求曲线上的a e.f 三点的需求的价格点弹性是不相等的,且有耳值不淇理由在于:在 a 点有,耳产需U li在f 点有,骂尸案在 e 点有,H在以上三式中,由于GBCKD所 以 琉 0为常数)时,则无论收入M 为多少,相应的需求的点弹性恒等于 口6假定需求函数为酒P、,其中 限 示 收 入,P表示商品价格,N(e q)为常数。求:需求的价格点弹性和需求的收入点弹性。8解 由以知条件(W可得:rE d a=-dQ QP =-(f-RMNZ DP-N-11)、-QP =MNP-*=MNF 3pTT=NM由此
12、可见,一般地,对于塞指数需求函数Q 6 =而言,其需求的价格价格点弹性总等于得指数的绝对值N 而对于线性需求函数Q =W F 而言,其需求的收入点弹性总是等于1.Z 假定某商品市场上有1 00个消费者,其中,6 0个消费者购买该 市 场 的 商 品,且每个消费者的需求的价格弹性均为3:另 外 4 0个消费者购买该 市 场 的 商 品,且每个消费者的需求的价格弹性均为 6 求:按 1 00个消费者合计的需求的价格弹性系数是多少?解:另在该市场上被1 00个消费者购得的该商品总量为Q 相应的市场价格为R 根据题意,该市场的1/3 的商品被6 0个消费者购买,且每个消费者的需求的价格弹性都是3,于是
13、,单个消费者i 的需求的价格弹性可以写为;dI dP Qi即 鬻=-3+(i=l,2,6 Q(1)且 =7 (2)9相类似的,再根据题意,该市场1/3 的商品被另外4 0个消费者购买,且每个消费者的需求的价格弹性都是6 于是,单个消费者j 的需求的价格弹性可以写为:Ed i=-4=6 OF Qj即 第=-6 3(j=l,2,4。(3)且 隼 冯=号 (4)此外,该市场上1 00个消费者合计的需求的价格弹性可以写为:一 旦 =_ 蛆邕强父迨也上=0 6 6也+4。)上dP Q dP Q S M I dP 勺=1 dP Q将(1)式、(3)式代入上式,得:EL-(-3。)+16与 看 1”16。4
14、0=十 物QTQ居1=1 1=1再 将(2)式、(4 式代入上式,得:%=_ ,得,等 W(T_*=5所以,按 1 00个消费者合计的需求的价格弹性系数是5b&假定某消费者的需求的价格弹性耳=1.,需求的收入弹性耳=2 2。求:(1)在其他条件不变的情况下,商品价格下降窈寸需求数量的影响。10(2)在其他条件不变的情况下,消费者收入提高5%寸需求数量的影响。解(D由于题知耳一至,于是有:-=Ed=-(1.3)X(-2%)=26%Q F所以当价格下降 次寸,商需求量会上升2.6%空(2)由于其=一岛,于是有:夕 =-ETO-=(2.2)X5%=11%即消费者收入提高5%寸,消费者对该商品的需求数
15、量会上升11%夕假定某市场上A B两厂商是生产同种有差异的产品的竞争者;该市场对A厂商的需求曲线为 2 0 0-Q,对B厂商的需求曲线为J=300-0.5 X Q;两厂商目前的销售情况分别为Q=50,Q=10Cl求:(1)A B两厂商的需求的价格弹性分别为多少?(2)如 果B厂商降价后,使 得B厂商的需求量增加为Q=160,同时使竞争对手A厂商的需求量减少为Q=4Cl那么,A厂商的需求的交叉价格弹性民是多少?(3)如 果B厂商追求销售收入最大化,那么,你认为B厂商的降价是一个正确的选择吗?解(D关于A T商:由于耳=200-50=150且A T商的需求函数可以写为;Q=20Z11于是 E =-
16、学1)x 3=3关 于B厂商:由 于1=300-0.5X 100=250且B厂商的需求函数可以写成:QWOO于是,B厂商的需求的价格弹性为:=-翳*=+2)x鬻=5(0 当 Q=40时,&H0(M0=160 且然一10当 Q1=160时,1=300-0.5X 160=220 且 Q,=0所以E.=竺&=卫.旦 一77 八 APB 1 QAL-3 0 50 3(5由(1)可知,B厂商在 用=250时的需求价格弹性为EdB=5,也就是说,对于厂商的需求是富有弹性的.我们知道,对于富有弹性的商品而言,厂商的价格和销售收入成反方向的变化,所以,B厂商将商品价格由耳=250下降为马=220,将会增加其销
17、售收入.具体地有:降价前,当 此=250且Q=100时,B厂商的销售收入为:叫 刃 Q=250 100=25000降 价 后,当R=2 2 0且Q|=160时,B厂 商 的 销 售 收 入 为:1,1=1 Qi=220 160=35200显然,叫 叫I,即B厂商降价增加了它的收入,所以,对 于B厂商的销售收入最大化的目标而言,它的降价行为是正确的.i a假定肉肠和面包是完全互补品.人们通常以一根肉肠和一个面包卷为比率做一个热狗,并且以知一根肉肠的价格等于一个面包的价 格.12(1)求肉肠的需求的价格弹性.(2)求面包卷对肉肠的需求的交叉弹性.(3)如果肉肠的价格面包的价格的两倍,那么,肉肠的需
18、求的价格弹性和面包卷对肉肠的需求的交叉弹性各是多少?解:令肉肠的需求为X面包卷的需求为Y相应的价格为R R;且有R F.该题目的效用最大化问题可以写为:Nkx U区 Y=min 区丫s.t.4 X+R Y=M解上述方程组有:冷 火R珏;.由此可得肉肠的需求的价格弹性为:M Px 1 Px(PX*PV)2由于一根肉肠和一个面包卷的价格相等,所 以,进一 步,有耳x韦 再 珏=口面包卷对肉肠的需求的交叉弹性为:E x -3Y Y(Px-f-Py)2 Px+Py由 于 一 根 肉 肠 和 一 个 面 包 卷 的 价 格 相 等,所 以,进 一 步,13 如 果R=2我则根据上面(1),的结果,可得肉
19、肠的需求的价格弹性为:甘 魅氏 月 2&-d Y x PX+PY3面包卷对肉肠的需求的交叉弹性为:甘 一 更 改 -2次 一 改 丫 一4+氏-31 1 利用图阐述需求的价格弹性的大小与厂商的销售收入之间的关系,并举例加以说明。a)当耳1时,在a点的销售收 入P Q相当于面积0 a Q,b点的销售收入P Q相当于面积CPM.显然,面积C T J a Q 面积C b Q o所以当耳1时,降价会增加厂商的销售收入,提价会减少厂商的销售收入,即商品的价格与厂商的销售收入成反方向变动。例:假 设 某 商 品 当 商 品 价格为2时,需求量为2Q厂商的销售收入为2 X 2 0=4 0,当商品的价格为2
20、2,即价格上升1 0%由于耳=2,所以需求量相应下降2 0%即下降为 同时,厂商的销售收入=2 2X 1,仁3 5.2显然,提价后厂商的销售收入反而下降了。5当 耳 1时,在a点的销售收入P Q相当于面积C P,a Q,b点的销售收入P Q相当于面积M b Q.显然,面积C P,a Q 面积C R b Qo14所以当耳 1时,降价会减少厂商的销售收入,提价会增加厂商的销售收入,即商品的价格与厂商的销售收入成正方向变动。例:假设某商品马与).5,当商品价格为2时,需求量为2 Q厂商的销售收入为2X 2(M a当商品的价格为2 2,即价格上升10%由于5,所以需求量相应下降5%即下降为1 2同时,
21、厂商的销售收入=2 2X 1.SM1.&显然,提价后厂商的销售收入上升了。当 耳=1时,在a点的销售收 入P Q相当于面积0 a Q,b点的销售收入P Q相当于面积CbQ.显然,面积CPMQ=面积H g。所以当耳=1时,降低或提高价格对厂商的销售收入没有影响。例:假设某商品耳=1,当商品价格为2时,需求量为2 Q厂商的销售收入为2X 2O=4a当商品的价格为2 2,即价格上升1C%由于耳=1,所以需求量相应下降10%即下降为1&同时,厂商的销售收入=2 2X 1.8=39.G 4 Q显然,提价后厂商的销售收入并没有变化。12利用图简要说明微观经济学的理论体系框架和核心思想。解:要点如下:(1)
22、关于微观经济学的理论体系框架.15微观经济学通过对个体经济单位的经济行为的研究,说明现代西方经济社会市场机制的运行和作用,以及这种运行的途径,或者,也可以简单的说,微观经济学是通过对个体经济单位的研究来说明市场机制的资源配置作用的.市场机制亦可称价格机制,其基本的要素是需求,供给和均衡价格.以需求,供给和均衡价格为出发点,微观经济学通过效用论研究消费者追求效用最大化的行为,并由此推导出消费者的需求曲线,进而得到市场的需求曲线.生产论.成本论和市场论主要研究生产者追求利润最大化的行为,并由此推导出生产者的供给曲线,进而得到市场的供给曲线.运用市场的需求曲线和供给曲线,就可以决定市场的均衡价格,并
23、进一步理解在所有的个体经济单位追求各自经济利益的过程中,一个经济社会如何在市场价格机制的作用下,实现经济资源的配置.其中,从经济资源配置的效果讲,完全竞争市场最优,垄断市场最差,而垄断竞争市场比较接近完全竞争市场,寡头市场比较接近垄断市场.至此,微观经济学便完成了对图中上半部分所涉及的关于产品市场的内容的研究.为了更完整地研究价格机制对资源配置的作用,市场论又将考察的范围从产品市场扩展至生产要素市场.生产要素的需求方面的理论,从生产者追求利润最大的化的行为出发,推导生产要素的需求曲线;生产要素的供给方面的理论,从消费者追求效用最大的化的角度出发,推导生产要素的供给曲线.据此,进一步说明生产要素
24、市场均衡价格的决定及其资源配置的效率问题.这样,微观经济学便完成了对图8中下半部分所涉及的关于生产要素市场的内容的研究.16在以上讨论了单个商品市场和单个生产要素市场的均衡价格决定及其作用之后,一般均衡理论讨论了一个经济社会中所有的单个市场的均衡价格决定问题,其结论是:在完全竞争经济中,存在着一组价格R B,R),使得经济中所有的N个市场同时实现供求相等的均衡状态,这 样,微观经济学便完成了对其核心思想即看不见的手原理的证明.在上面实现研究的基础上,微观经济学又进入了规范研究部分,即福利经济学.福利经济学的一个主要命题是:完全竞争的一般均衡就是帕累托最优状态.也就是说,在帕累托最优的经济效率的
25、意义上,进一步肯定了完全竞争市场经济的配置资源的作用.在讨论了市场机制的作用以后,微观经济学又讨论了市场失灵的问题.为了克服市场失灵产生的主要原因包括垄断.外部经济.公共物品和不完全信息.为了克服市场失灵导致的资源配置的无效率,经济学家又探讨和提出了相应的微观经济政策。关 于微观经济学的核心思想。微观经济学的核心思想主要是论证资本主义的市场经济能够实现有效率的资源配置。通过用英国古典经济学家亚当斯密在其1 7 7 6年 出 版 的 国民财富的性质和原因的研究一书中提出的、以后又被称 为“看不见的手”原理的那一段话,来表述微观经济学的核心思想2原文为:“每个人力图应用他的资本,来使其产品能得到最
26、大的价值。一般地说,他并不企图增进增加公共福利,也不知道他所增进的公共福利为多少。他所追求的仅仅是他个人的安乐,仅仅是他个人的利益。17在这样做时,有一只看不见的手引导他去促进一种目标,而这种目标绝不是他所追求的东西。由于他追逐他自己的利益,他经常促进了社会利益,其效果要比其他真正促进社会利益时所得到的效果为大。微观经济学(高鸿业第四版)第三章练习题参考答案么 已知一件衬衫的价格为80元,一份肯德鸡快餐的价格为20元,在某消费者关于这两种商品的效用最大化的均衡点上,一份肯德鸡快餐对衬衫的边际替代率NRS是多少?解:按照两商品的边际替代率的定义公式,可以将一份肯德鸡快餐对衬衫的边际替代率写成:M
27、RSXY=-总其中:)诔示肯德鸡快餐的份数;、俵示衬衫的件数;MRS表示在维持效用水平不变的前提下,消费者增加一份肯德鸡快餐时所需要放弃的衬衫消费数量。在该消费者实现关于这两件商品的效用最大化时,在均衡点上有以小即有 NRSxv=2Q/80=0.25它表明:在效用最大化的均衡点上,消费者关于一份肯德鸡快餐对衬衫的边际替代率WRS为0.25。18幺假设某消费者的均衡如图1 9所示。其中,横 轴 和 纵 轴C K,分别表示商品1和商品2的数量,线段A B为消费者的预算线,曲线U为消费者的无差异曲线,E点为效用最大化的均衡点。已知商品1的价格耳=2元。(D求消费者的收入;求上品的价格只;写出预算线的
28、方程;求预算线的斜率;(5)求E点的呻2的值。解:(1)图中的横截距表示消费者的收入全部购买商品1的数量为3 0单位,且已知R=2元,所以,消费者的收入族=2元X 3(M(1(2)图中的纵截距表示消费者的收入全部购买商品2的数量为2 0单位,且由(1)已知收入 90元,所以,商 品2的价格B斜 率=5=-M得 牛 犷2 0=3元(3)由于预算线的一般形式为:阴 珏 川所以,由(1)、(2)可将预算线方程具体写为当网WQ(今 将(3)中 的 预 算 线 方 程 进 一 步 整 理 为3 X+2Q很清楚,预算线的斜率为一以19(5)在消费者效用最大化的均衡点E ,有 呻2=酒2再上,即无差异曲线的
29、斜率的绝对值即M3等于预算线的斜率绝对值%叱。因此,在M R凡44请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线,同时请对(2)和(3)分别写出消费者B和消费者C的效用函数。(1)消费者A喜欢喝咖啡,但对喝热茶无所谓。他总是喜欢有更多杯的咖啡,而从不在意有多少杯的热茶。(4消费者嘻欢一杯咖啡和一杯热茶一起喝,他从来不喜欢单独只喝咖啡,或者只不喝热茶。(3)消费者C认为,在任何情况下,1杯咖啡和2杯热茶是无差异的。(4)消费者D喜欢喝热茶,但厌恶喝咖啡。解答:(1)根据题意,对消费者A而言,热茶是中性商品,因此,热茶的消费数量不会影响消费者A的效用水平。消费者A的无差异曲线见图(2根据
30、题意,对消费者B而言,咖啡和热茶是完全互补品,其效用函数是 由n i n 奉。消费者B的无差异曲线见图(3根据题意,对消费者C而言,咖啡和热茶是完全替代品,其效用函数是 比24十%消 费 者C的无差异曲线见图20(根据题意,对消费者D而言,咖啡是厌恶品。消费者邛勺 无差异曲线见图4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为R=20元 和R T 0元,该消费者的效用函数为U=3 XJ g,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少?解:根据消费者的效用最大化的均衡条件:其中,由U=3 X】X/可得:=3X2M 4=dH j4IK=6于是,有:
31、3K2/6Kx=2/0 (1)整理得将(D式代入预算约束条件20-B0=540,得:乂=12因此,该消费者每年购买这两种商品的数量应该为:13耳=588821,假设某商品市场上只有A B两个消费者,他们的需求函数各自为01=20-4P和 假=30-5P。(1)列出这两个消费者的需求表和市场需求表;根 据(1),画出这两个消费者的需求曲线和市场需求曲线。解:(1)A消费者的需求表为:B消费者的需求表为:P012345Qd201612840市场的需求表为:P0123456Qd302520151050(与 A消费者的需求曲线为:p0123456a50413223145022B消费者的需求曲线为:市场
32、的需求曲线为:3 1&假定某消费者的效用函数为U x:x ,两商品的价格分别为R,月 消 费 者 的 收 入 为 M 分别求出该消费者关于商品1和 商 品 2的需求函数。解答:根据消费者效用最大化的均衡条件:其中,由以知的效用函数U=x会加 得:于是,有:整理得段=包Pz即 有*2=4 (1)把(1)式代入约束条件RK比 X留有:23P】x1 +p.=M3Pz解 得 X1=*代 入(1)式得M=善所以,该消费者关于两商品的需求函数为3M刈=瓯5MX L杷7 令某消费者的收入为M 两商品的价格为E,珠假定该消费者的无差异曲线是线性的,切斜率为f求:该消费者的最优商品组合。解:由于无差异曲线是一条
33、直线,所以该消费者的最优消费选择有三种情况,其中的第一、第二种情况属于边角解。第一种情况:当 弊 2*/时,即 3 斗七时,如图,效用最大的均 衡 点 E的位置发生在横轴,它表示此时的最优解是一个边角解,即耳鼻“再,x=a也就是说,消费者将全部的收入都购买商品L并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。第二种情况:当 酒2 徜 时,*巳 也 时,如图,效用最大的均衡 点E的位置发生在纵轴,它表示此时的最优解是一个边角解,即K 黑 出,不 心 也 就
34、是 说,消费者将全部的收入都购买商品2,并由此24达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。第三种情况:当 年 2 日 修 时,=巳也时,如图,无差异曲线与预算线重叠,效用最大化达到均衡点可以是预算线上的任何一点的商品组合,即最优解为X l 0,X 2 0,且 满 足 P 1 X H P 2 X 9 此时所达到的最大效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一条无差异曲线所能达到的效用水平,例如那些用虚线表示的无
35、差异曲线的效用水平。&假定某消费者的效用函数为U =q0 5+3M,其中,q 为某商品的消费量,M 为收入。求:(1)该消费者的需求函数;(与 该 消 费者的反需求函数;(3)当 P =3 旧时的消费者剩余。解:(1)由题意可得,商品的边际效用为:M U 嘿货币的边际效用为:入=黑=3于是,根据消费者均衡条件M J 至 4,有:冲”=3 P25整理得需求函数为q=S6p2(0 由需求函数C F=1/6P2,可得反需求函数为:(3 由反需求函数P=*q-3,可得消费者剩余为:V以 月/1 2,E代入上式,则有消费者剩余:Cs=l/3夕设某消费者的效用函数为柯布谴格拉斯类型的,即口史严,商 品 X
36、和商品y的价格格分别为R和 R,消费者的收入为M a 和B 为常数,且a 部=1(1)求该消费者关于商品X和 品 y的需求函数。(与证明当商品X和 y的价格以及消费者的收入同时变动一个比例时,消费者对两种商品的需求关系维持不变。(3)证明消费者效用函数中的参数a 和分别为商品x和商品y的消费支出占消费者收入的份额。解答:(1)由消费者的效用函数U=xyB,算得:MUxMUy3U=可眦 尸消费者的预算约束方程为口也出(D26根据消费者效用最大化的均衡条件MVx _ PxMUy-即(2)Px*+PyY=M。产 一=Px得,;K H y l-p y (3)h x +pyy=M解方程组(3),可得x=
37、M/ps(y=BM/p、-(5)式(4即为消费者关于商品x和商品y的需求函数。上述休需求函数的图形如图(4商 品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的预算线变为X pxx H k RQ M(其中入为一个非零常数。此时消费者效用最大化的均衡条件变为(5产、0=年 3 0 0 0 1 0 0所以 I C Q=a-1 5 a+1 0 0 Q I M当 Q=1 0时,g l O O O =5 0 0(1)固定成本值:5 0 0 7 C 0=-1 5 +1 0 0 0 5 0 0W:Q=a-1 5 a+1 0 0 QA 2 Q =O T 5 Q H 0*0 Q/QA M 2 Q
38、 =a-W100416、某 公 司 用 两 个 工 厂 生 产 一 种 产 品,其总成本函数为G=2Q?4Q2Q,其 中Q表示第一个工厂生产的产量,Q表示第二个工厂生产的产量求:当公司生产的总产量为40时能够使得公司生产成本最小的两工厂的产量组合.解:构造 F Q=2Q2珀2R Q6 Q+Q TQ传=4QLQ?+a=0令(普=2Qz-Q1+7=。=Il,=Qi+Qz-40=QCT A.(Qi=15Q?=25入=-35使成本最小的产量组合为Q=15,Q=257、已知生产函数。式 亡4K/各要素价格分别为R=L R=L R=2;假定厂商处于短期生产,且K=16.推导:该厂商短期生产的总成本函数和平
39、均成本函数;总可变成本函数和平均可变函数;边际成本函数.解:因为R=1 6,所以G 4 T L T (1)M/=金=A-/,G AM FL =孚=Alf*L-4vL3Q.也 二&竺 竺 二 里=1画一页一 A O 4L-3/4-R-&L L所 以 上公由(1)可 知0/1 6(2)42又 IC Q w妫 Q H&L Q 珏&16=0/1 介 4 2 2=0/a B 2A2 Q=(W 3 W Q=0/8A C Q =Q/8 M=Q 4&已知某厂商的生产函数为Q=o.5 i n ;当资本投入量后50时资本的总价格为50a劳动的价格E=5,求:(1)劳动的投入函数 口 Q.(2)总成本函数,平均成本
40、函数和边际成本函数.当产品的价格4 1 0 0时,厂商获得最大利润的产量和利润各是多少?解:(1)当建=50时,R拉犬 50=500,所以玲=1。峭M R _ *凸1 5才生产,而 上5时必定会停产,所以,该厂商的短期供给函数Q=f(B为:一::三七5y 0.6Q=0,P260.求该厂商利润最大化时的产量和利润解答:由于对完全竞争厂商来说,有 三 淤 时融 上 Q/O 38;MTER Q/(Q=38所 以4 3 8根据完全竞争厂商利润最大化的原则M注0.6Q-10=380=8 0即利润最大化时的产量再根据总成本函数与边际成本函数之间的关系SIC Q=0.Xj-IOQIC=0.3d-10QHTC
41、以Q=20时SIG=260代人上式,求有260=0.3*400-10*2OOTCIK=340于是,得 到SK函数为SIC Q=0.30-1OQH4O59最后,以利润最大化的产量80代人利润函数,有7 i Q 勺R Q-SIC Q=38Q-(0.30-10040)=38*80-(0.3*80-10*8由40=3040-1460=1580即利润最大化时,产量为8 0,利润为1580&用图说明完全竞争厂商短期均衡的形成极其条件。解答:要点如下:(1)短期内,完全竞争厂商是在给定的价格和给定的生产规模下,通过对产量的调整来实现的利润最大化的均衡条件的。具体如图1T0所 示(见 书P69 o(0首先,关
42、于乂 与 或 厂商根据阵的利润最大化的均衡条件来决定产量。如在图中,在价格顺次为R、B、R R和R时,厂商 根 据 的 原 则,依次选择的最优产量为Q、Q、Q、Q和Q,相应的利润最大化的均衡点为耳耳、耳、耳和耳。(3然后,关于树口 的比较。在(2)的基础上,厂商由(2)中所选择的产量出发,通过比较该产量水平上的平均收益业与短期平均 成 本SAC的大小,来确定自己所获得的最大利润量或最小亏损量。60啊图中,如果厂商在Q 1的产量水平上,则厂商有岖S N;即八F 如果厂商在0 2的产量的水平上,则厂商均有线样C即A(最后,关于 树口&的比较,如果厂商在(3)中是亏损的,即,那么,亏损时的厂商就需要
43、通过比较该产量水平上的平均收益A R和平均可变成本A宽的大小,来确定自己在亏损的情况下,是否仍要继续生产。在图中,在亏损是的产量为Q 3时,厂商有,于是,厂商句许生产,因为此时生产比不生产强;在亏损时的产量为小时,厂商有醍 颉;于是,厂商生产与不生产都是一样的;而在亏损时的产量为Q 5时,厂商有 闻 颇;于是,厂商必须停产,因为此时不生产比生产强。(5)综合以上分析,可得完全竞争厂商短期均衡的条件是:其中,限 通 矣 而且,在短期均衡时,厂商的利润可以大于零,也可以等于零,或者小于零。61夕为什么完全竞争厂商的短期供给曲线是曲线上等于和高于A M 3曲线最低点的部分?解答:要点如下:(1)厂商
44、的供给曲线所反映的函数关系为(),也就是说,厂商供给曲线应该表示在每一个价格水平上厂商所愿意而且能够提供的产o()通过前面第7题利用图1 7 1对完全竞争厂商短期均衡的分析,可以很清楚地看到,3 曲线上的各个均衡点,如E k E 2.E 3.球 和E 5点,恰恰都表示了在每一个相应的价格水平,厂商所提供的产量,如价格为P 1时,厂商的供给量为Q 1;当价格为P 2时,厂商的供给 量 为 口 于是,可以说,S C曲线就是完全竞争厂商的短期供给曲线。但是,这样的表述是欠准确的。考虑到在瓯曲线最低点以下的 曲 线 的 部 分,如E 5点,由于限领;厂商是不生产的,所以,准确的表述是:完全竞争厂商的短
45、期供给曲线是曲线上等于和大于AK曲线最低点的那一部分。如 图1 32所 示(见 书P 7。(3)需要强调的是,由(2)所得到的完全竞争厂商的短期供给曲线的斜率为正,它表示厂商短期生产的供给量与价格成同方向的变化;此外,短期供给曲线上的每一点都表示在相应的价格水平下可以给该厂商带来最大利润或最小亏损的最优产量。62图1 7 2i a用图说明完全竞争厂商长期均衡的形成及其条件。解答:要点如下:(1)在长期,完全竞争厂商是通过对全部生产要素的调整,来实现 的 利 润 最 大 化 的 均 衡 条 件 的。在这里,厂商在长期内对全部生产要素的调整表现为两个方面:一方面表现为自由地进入或退出一个行业;另一
46、方面表现为对最优生产规模的选择。下面以图1 33加以说明。图 1-3363(4关于进入或退出一个行业。在 图1 33中,当市场价格较高为P 1时,厂商选择的产量为Q,从而在均衡点E实现利润最大化的均衡条件M m e在均衡产量Q,有 州厂商获得最大的利润,即A X I由于每个厂商的AX),于是就有新的厂商进入该行业的生产中来,导致市场供给增加,市场价格R下降,直至市场价格下降至市场价格到使得单个厂商的利润消失,即八为为止,从而实现长期均衡。入图所示,完全竞争厂商的长期均衡点月发生在长期平均成本L A C曲线的最低点,市场的长期均衡价格耳也等于L A C曲线最低点的高度。相反,当市场价格较低为B时
47、,厂商选择的产量为Q,从而在均衡 点E实 现 利 润 最 大 化 的 均 衡 条 件 在 均 衡 产 量Q,有NV I A;厂商是亏损的,即,A U由于每个厂商的八O,于是,行业内原有厂商的一部分就会退出该行业的生产,导致市场供给减少,市场价格B开始上升,直至市场价格上升到使得单个厂商的亏损消失,即为八=0止,从而在长期平均成本L A C曲线的最低点月实现长期均衡。(3关于对最优生产规模的选择通过在(2)中的分析,我们已经知道,当市场价格分别为Pp只和耳时,相应的利润最大化的产量分别是Q、Q和Qo接下来的问题是,当厂商将长期利润最大化的产量分别确定为Q、Q和Q以后,他必须为每一个利润最大化的产
48、量选择一个最优的规模,以确实保证每一产量的生产成本是最低的。于是,如图所示,当厂商利润最大化的产量为Q时,他选择的最优生产规模用S A C;曲线和 M曲线表示;当64厂商利润最大化的产量为Q时,他选择的最优生产规模用胤 曲线和曲线表示;当厂商实现长期均衡且产量为Q时,他选择的最优生产规模用阳 曲线和可 曲线表示。在 图1 33中,我们只标出了 3个产量水平Q、Q和Q,实际上,在任何一个利润最大化的产量水平上,都必然对应一个生产该产量水平的最优规模。这就是说,在每一个产量水平上对最优生产规模的选择,是该厂商实现利润最大化进而实现长期均衡的一个必要条件。(综上所述,完全竞争厂商的长期均衡发生在曲线
49、的最低点。此时,厂商的生产成本降到了长期平均成本的最低点,商品的价格也对于最低的长期平均成本。由此,完全竞争厂商长期均衡的条件是:M M M=9 =4 A=S A;其中,限 通 雯 此时,单个厂商的利润为O 微观经济学(高鸿业第四版)第七章练习题参考答案1、根据图1 T 1 (即教材第2 5 7页 图7-2 2)中线性需求曲线d和相应的边际收益曲线迩试求:(1)A点 所 对 应 的 值;(2)B点所对应的N R值.解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为:65e(i=2 或者 ed=士 =2再根据公式,则A点的N R值为:M=2 X (2 X =1(2)与(1)类
50、似,根据需求的价格点弹性的几何意义,可 得B点的需求的价格弹性为:/=号=:或者 ed=!再 根 据 公 式-二),则B点的顺值为:dMR=1X(1-)Z1/2图 1-382图1 7 9(即教材第2 5 7页 图7-2 3)是某垄断厂商的长期成本曲线、需求曲线和收益曲线.试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SA 2曲线和&曲线;(3)长期均衡时的利润量.66解答:本题的作图结果如图1T0所示:(1)长期均衡点为E点,因为,在E点有由E点出发,均衡价格为P 0,均衡数量为Q3.长期均衡时代表最优生产规模的S隹曲线和SVC曲线如图所示.在Q)