《七年级数学下册优秀课件简短【优秀9篇】.docx》由会员分享,可在线阅读,更多相关《七年级数学下册优秀课件简短【优秀9篇】.docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册优秀课件简短【优秀9篇】七年级数学下册课件 篇一 一、指导思想: 以初中数学新课程标准为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的
2、呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。 二、教材目标及要求: 1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。 2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。 3、勾股定理:会用勾股定理和逆定理解决实际问题。 4、四边形的重点是平行四边形的定义、性
3、质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。 5、数据描述。 三、教学措施: 1、认真备课,做好教学规划。一堂课,40分钟,要讲好并不容易,既要保证讲透所有的知识点,又要兼顾学生的接受能力,因此课前备课尤为重要,针对每一节内容,选择不同的讲课方式,特别是运用通俗易懂的实际用例,可以使学生更容易接受知识点,所以课前充分做好准备,每一步都要考虑周到。 2、重视改进教学方法,坚持启发互动式教育。讲课前要安排学生进行预习,对将要学的内容有一个初步的了解,在讲课过程中,老师步步引导,以随问的方式讲解知识点和例题,观察学生的反应,随时了解到学生的接受情况,在针对理解不透彻的
4、地方进行重点讲解,做到老师与学生的互动教学学习,提高效率,还能激发学生的学习兴趣。只要兴趣有了,学生有学习欲 望,那自然会努力学好。 3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。 4、做好课后辅导。在课后及作业巩固练习后,对于学生没有完全接受的问题进行辅导讲解,除了针对单个学生的辅导,发现共性问题,在进行后期的巩固指导教学,使学会知识点的学生掌握的更加牢固,没有完全学会的学生可以理解应用。 七年级数学下册课件 篇二 我们学校数学教学难,学生基础差,一些教学观念的落后陈旧,内容的不灵活,为保证教学顺利进行,提高学生的
5、学习能力,应使用一些切实可行的计划。 一、学生情况分析 有的学生对自己学习数学的信心不足,积极主动性不够,而所学的数学基础知识薄弱,基本概念模糊不清,基本方法掌握不够扎实,缺乏对基础的理解和研究,没有注重对所学知识和方法进行及时的复习与巩固,进而遗忘很快;灵活运用知识分析问题,解决问题能力差,只会模仿,不会举一反三,有点变化的题目就会变得束手无策。 二、教学目的 1、获得必要的数学基础知识和基本技能,理解数学基本概念、数学理论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及他们在后续学习中的作用。通过不同形式的自主、探究活动,体验数学发现和创造的过程。 2、提高对
6、数学提出、分析和解决问题的能力,发展独立获取数学知识的能力。 3、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 三、教学目标 1、理解整式、分式、数的乘方和开方的概念;中我他们的性质和运算法则 2、掌握一元二次方程的解法,能解简单的二元一次方程组、二元二次方程组;能灵活的运用一元二次方程根的判别式以及根与系数的关系解决相关问题 3、理解分数指数幂的概念,掌握有理指数幂的运算性质。 4、了解集合、元素、子集的概念:了解区间的概念,能够利用区间的形式表示简单的数集。 四、教学分析 1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,创设能体现数学概念和结论,数学
7、的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。 2、在教学中强调类比,推广,特殊化等数学思想方法,尽可能培养其逻辑思维的习惯。 五、教学措施 1、抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,因此,抓号课堂教学是教学之根本,是提高数学成绩的主要途径。 2、加强课外辅导,提高竞争能力。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。 3、搞好单元测试,对阶段性的考试进行分析。 七年级下册数学知识点 篇三 一。整式 1.单项式 由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。 单项式的系数是这个单项式的数字因数,作为单项式的系
8、数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。 一个单项式中,所有字母的指数和叫做这个单项式的次数。 2.多项式 几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。 单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。 3.整式单项式和多
9、项式统称为整式。 二。整式的加减 1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。 2、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。 三。同底数幂的乘法 同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: 法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式; 指数是1时,不要误以为没有指数; 不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才
10、能相加; 当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数); 公式还可以逆用:(m、n均为正整数) 四。幂的乘方与积的乘方 1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。 2.。 3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a)3化成-a3 4.底数有时形式不同,但可以化成相同。 5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)
11、。 7.幂的乘方与积乘方法则均可逆向运用。 五。同底数幂的除法 1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a0,m、n都是正数,且mn)。 2.在应用时需要注意以下几点: 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0. 任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义。 任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a0,p是正整数),而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 七年级下册数学知识点 篇四 一、知识点: 1、“三线八角”如何由线找角:一看线,二看型。同位
12、角是“F”型;内错角是“Z”型;同旁内角是“U”型。如何由角找线:组成角的三条线中的公共直线就是截线。 2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。简述:平行于同一条直线的两条直线平行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。简述:垂直于同一条直线的两条直线平行。 3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补 4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。 5、三角
13、形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。若三角形的三边分别为a、b、c,则 6、三角形中的主要线段:三角形的高、角平分线、中线。注意:三角形的高、角平分线、中线都是线段。高、角平分线、中线的应用。 7、三角形的内角和:三角形的3个内角的和等于180;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。 8、多边形的内角和:n边形的内角和等于(n-2)180;任意多边形的外角和等于360。 七年级下册数学知识点 篇五 相交线与平行线 1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,
14、特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。 2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。 3、两条直线被第三条直线所截: 同位角F(在两条直线的同一旁,第三条直线的同一侧) 内错角Z(在两条直线内部,位于第三条直线两侧) 同旁内角U(在两条直线内部,位于第三条直线同侧) 4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。 5、垂直三要素:垂直关系,垂直记号,垂足 6、垂直公理:过一点有
15、且只有一条直线与已知直线垂直。 7、垂线段最短。 8、点到直线的距离:直线外一点到这条直线的垂线段的长度。 9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b/a,c/a,那么b/c 10、平行线的判定: 同位角相等,两直线平行。内错角相等,两直线平行。 同旁内角互补,两直线平行。 11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。 12、平行线的性质: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。 13、平面上不相重合的两条直线之间的位置关系为_或_
16、14、平移:平移前后的两个图形形状大小不变,位置改变。对应点的线段平行且相等。 平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。 15、命题:判断一件事情的语句叫命题。 命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。 命题分为真命题和假命题两种;定理是经过推理证实的真命题。 实数 一、实数的概念及分类 1、实数的分类正有理数有理数零有限小数和无限循环小数 负有理数 正无理数 无理数无限不循环小数 负无理数 整数包括正整数、零、负整数。
17、正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如7,2等; (2)有特定意义的数,如圆周率,或化简后含有的数,如+8等; 3 (3)有特定结构的数,如0.1010010001等; 二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|
18、a|0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。正数大于零,负数小于 零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 4、实数与数轴上点的关系: 每一个无理数都可以用数轴上的一个点表示出来, 数轴上的点有些表示有理数,有些表示无理数, 实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。 三、平方根、算数平方根和立方根 1、平方根 (1)平方根的定义:如果一个数x的平方等于a,那么这个
19、数x就叫做a的平方根。即:如果 a,那么x叫做a的平方根。?x2 (2)开平方的定义:求一个数的平方根的运算,叫做开平方。开平方运算的被开方数必须是非负数才有意义。 3?3的平方等于9,9的平方根是?(3)平方与开平方互为逆运算: (4)一个正数有两个平方根,即正数进行开平方运算有两个结果; 一个负数没有平方根,即负数不能进行开平方运算 (5)符号:正数a的正的平方根可用表示,也是a的算术平方根; 正数a的负的平方根可用-表示。 a?2(6)x ??x a是x的平方x的平方是a x是a的平方根a的平方根是x 2、算术平方根 a,那么这个正数?(1)算术平方根的定义:一般地,如果一个正数x的平方
20、等于a,即x2 x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。 规定:0的算术平方根是0. 。?a (x0)中,规定x?也就是,在等式x2 (2)的结果有两种情况:当a是完全平方数时,是一个有限数; 当a不是一个完全平方数时,是一个无限不循环小数。 (3)当被开方数扩大时,它的算术平方根也扩大; 当被开方数缩小时与它的算术平方根也缩小。 (4)夹值法及估计一个(无理)数的大小 a (x0)?(5)x2 ?x a是x的平方x的平方是a x是a的算术平方根a的算术平方根是x 学习方法 1、注重预习培养自学能力 在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容
21、单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。 一划:就是圈划知识要点,基本概念。 二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。 三试:就是尝试性地做一些简单的练习,检验自己预习的效果。 四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。 数学概念 正确地理解和形成一个数学概念,必须明确这个数学概念的内涵对象的“质”的特征,及其外延对象
22、的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。 比如,儿童对自然数,对运算结果和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。 许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增
23、强了科学性。 许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图像来表示,比如函数y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。 总之,数学概念是在人类历史发展过程中,逐步形成和发展的。 七年级下册数学实数知识点 篇六 1、实数的概念及分类 实数的分类 无理数 无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: 开方开不尽的数,如 7 ,3 2等; 有特定意义的数,如圆周率,或化简后含有的数,如 /+8等; 有特定结构
24、的数,如0.1010010001等; 某些三角函数值,如sin60等 2、实数的倒数、相反数和绝对值 相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。 绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。 倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。 数轴 规定了原点、正方向和单位长度的
25、直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 估算 3、平方根、算数平方根和立方根 算术平方根 一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。 性质:正数和零的算术平方根都只有一个,0的算术平方根是0。 平方根 一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方求一个数a的平方根的运算,叫做开平方。注意 a的双重
26、非负性:a0 ; a0 立方根 一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。 表示方法:记作 3 a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:- 3 a=3 -a,这说明三次根号内的负号可以移到根号外面。 4、实数大小的比较 实数比较大小 正数大于零,负数小于零,正数大于一切负数; 数轴上的两个点所表示的数,右边的总比左边的大; 两个负数,绝对值大的反而小。 实数大小比较的几种常用方法 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 求差比较:设a、b是实数 a-b0ab; a-b=0a=b;
27、a-b0ab p= 。 b p= 。求商比较法:设a、b是两正实数, b p= 。 绝对值比较法:设a、b是两负实数,则abab。 p= 平方法:设a、b是两负实数,则 a2b2ab p= 。 b p= 。5、算术平方根有关计算(二次根式) b p= 。 含有二次根号“ ”;被开方数a必须是非负数。 性质: 运算结果若含有“ ”形式,必须满足: 被开方数的因数是整数,因式是整式 被开方数中不含能开得尽方的因数或因式 6、实数的运算 六种运算:加、减、乘、除、乘方 、开方。 实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 运算律 加法交换律 a+b= b+a
28、 加法结合律 (a+b)+c= a+( b+c ) 乘法交换律 ab= ba 乘法结合律 (ab)c = a( bc ) 乘法对加法的分配律 a( b+c )=ab+ac 七年级数学下册课件 篇七 本学期我担任二年五班和二年六班的教学任务,现教学工作计划如下: 一、教学目标 1、面向全体学生,促进学生全面和谐与主动的发展,三维目标有机整合,保证学生身心健康成长,尊重学生的主体地位,调动学生的积极性。 2、激发学生学习兴趣,培养学生严谨的态度,培养学生的好习惯。 3、发展善于合作,勤于思考,爱于学习的科学精神,并锻炼学生自学能力。 4、培养学生爱国情感,团结合作能力。 5、锻炼学生发现问题、分析
29、问题、解决问题的能力,锻炼学生动手能力。 二、教学资源分析 其中教学任务的重点是了解分式的基本性质,掌握有关分式的四则运算法则,会用一元一次分式方程解决实际问题;理解反比例函数的概念,会画反比例函数的图象,会求反比例函数的解析式,能利用函数性质解决一些简单的实际问题;会用定理解决简单问题,会用勾股定理的逆定理判定直角三角形;掌握平等四边形、矩形、菱形、正方形、梯形的概念,掌握特殊四边形的有关性质和判定方法;理解平均数、中位数和众数等统计量的统计意义,会算权平均数、极差和方差,会用样本平均数、方差估计总体的平均数方差。 教学资源除了教材、教师用书,还可以充分利用集体备课、网络资源、多媒体资源等。
30、另外,学生也可以利用身边的生活用品制作具,这也锻炼了学生的动手能力及观察能力。 三、学生基本情况分析 五、六班学生大多数可以做到课上认真学习,课后完成作业,通过小组合作的形式完成教学内容,但仍有一小部分学生上课溜号或搞小动作,注意力不集中,作业不认真完成,没有学习气氛。 四、教学方法设计 1、在教学设计中,要让学生参与学习,主动学习,锻炼学生自学能力。利用分组加分的方法激发学生的积极性。 2、检查学生的预习情况,适当加分扣分,培养学生认真预习的习惯;上课充分利用好学生的好胜心理,让学生上前台讲解,其他学生补充改正,培养学生认真听讲、认真阅读思考、大胆发言、记笔记的好习惯。 3、认真设计课前引言
31、、课中引导用语,培养学生发现问题的习惯。 4、严格要求学生的书写习惯,培养学生认真审题、检验改错的好习惯。 5、充分利用好学校提供的教学教具,例如:挂图、多媒体、网络,及即将安装的班班通。 中位数怎么求 篇八 把所有的同类数据按照大小的顺序排列。如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那两个数据的算术平均值就是这群数据的中位数。 例题:找出这组数据23、29、20、32、23、21、33、25 的中位数。 首先将该组数据进行排列(这里按从小到大的顺序),得到: 20、21、23、23、25、29、32、33 因为该组数据一共由8个数据组成,n为偶数
32、, 故按中位数的计算方法,得到中位数(23+25)/2=24, 即第四个数和第五个数的平均数。 七年级数学下册课件 篇九 一、指导思想 本学期数学科组教研工作要在教学处、教研室的指导下,以优化提高学生数学素养、促进学生全面发展为目标,以提高教师自身的专业化水平为基础,关注新课改的走向,关注常规教学和教研,培优辅差,初一衔接好,初二稳定好,毕业班复习备考准备好。做好听课、教案作业工作的检查。全面开展以教带研,以研促教的教研活动,开拓创新,形成特色教学。 二、具体措施 1、深入钻研教材,抓好集体备课。 教研组长加强对教学流程中的备课、上课、作业批改、辅导、考试等环节的检查和指导,每月末对各种教学簿
33、册(备课本、作业本、作业批改记录本等)进行全面检查。 2、组织同科组教师互相学习。 (1)加强校本教研,促进教师专业化发展,主动配合学校的制度化学习。 (2)每周组织科组教师进行业务学习。内容包括:新课程标准、课程标准解读、课堂教学技巧、教学设计、教学反思等等。 (3)学习实验教材案例,根据本级的实际情况评价案例,取长补短。 (4)学习实验教科书数学教材分析与介绍,弄清各单元的要求,把握好各知识点的重点、难点及深度。 3、互相听课,共同进步。 (1)组织科组教师集体备课,认真研究教材,灵活使用教材,充分挖掘教材资源,设计优质的教案。 (2)开学第一周即落实备课组教师的中心发言内容,合理安排人员
34、负责。要求中心发言人要认真阅读数学课程标准,结合学生的实际情况和要求,收集准备相关资料进行备课。 (3)中心发言的老师周三前将下一周的教学内容的中心发言稿准备好,在集体备课时间交科组教师讨论并加以修订,确定教学方案,星期五将修订结果印发给科组的老师。 (4)中心发言内容包括:课时安排、教学目的、重点、难点、课题引入、例题、课堂练习、课外作业等等。要真正做到本级部各班的“五统一”,即统一进度、统一重点难点、统一课外作业、统一测试、统一评卷。 (5)互相听课,及时总结,完善课堂教学。 (6)争取外出听课,及时吸收外界信息,改进教学方法,提高教学水平。 读书破万卷下笔如有神,以上就是一秘范文为大家整理的9篇七年级数学下册优秀课件简短,希望可以启发您的一些写作思路。23