《专题4二次函数与相似问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx》由会员分享,可在线阅读,更多相关《专题4二次函数与相似问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、下载来源:初中数学资料群:795399662,其他科资料群:729826090挑战2023年中考数学压轴题之学霸秘笈大揭秘 专题4二次函数与相似问题函数中因动点产生的相似三角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 相似三角形常见的判定方法:(1)平行
2、线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似判定定理“两边及其夹角法”是常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验如果已知AD,探求ABC与DEF相似,只要把夹A和D的两边表示出来,按照对应边成比例,分和两种情况列方程应用判定定理“两角
3、法”解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等应用判定定理“三边法”解题不多见,根据三边对应成比例列连比式解方程(组)还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题【例1】(2022贵港)如图,已知抛物线yx2+bx+c经过A(0,3)和B(,)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PDx轴交AB于点D(1)求该抛物线的表达式;(2)若PEx轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与AOC相似,请直接写出所有满足条件的点P
4、,点D的坐标【例2】(2022衡阳)如图,已知抛物线yx2x2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线yx+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PMy轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使CMN与OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由【例3】(2022桂林)如图,抛物线yx2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物
5、线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PMy轴于点M,当CPM和QBN相似时,求点Q的坐标【例4】(2022玉林)如图,已知抛物线:y2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x,P是第一象限内抛物线上的任一点(1)求抛物线的解析式;(2)若点D为线段OC的中点,则POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与BMH相似,求点P的坐
6、标1(2020秋兴城市期末)如图,抛物线yax2+bx+4经过A(4,0),B(1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E(1)求抛物线的解析式;(2)如图1,设ADE的面积为S1,BCE的面积为S2,当S1S2+5时,求点D的坐标;(3)如图2,过点C作CFx轴,点M是直线CF上的一点,MNCF交抛物线于点N,是否存在以C,M,N为顶点的三角形与BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由2(2020秋郴州期末)已知抛物线yx23x+与x轴交于A,B两点(点A在点B的左边)(1)求A,B两点的坐标;(2)如图1
7、,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DEx轴于点E当APO与ADE的面积比为时求点D的坐标;(3)如图2,抛物线与y轴相交于点F若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边)请问是否存在以Q,A,M为顶点的三角形与QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由3(2020秋长垣市期末)如图1,抛物线yx2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,3)(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当PBC的面积为时,求m值;(3)如图2,点M是线
8、段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E两点,是否存在以C,D,E为顶点的三角形与BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由4(2021秋邹城市期末)如图,已知抛物线yx2+2x的顶点为A,直线yx+2与抛物线交于B,C两点(1)求A,B,C三点的坐标;(2)作CDx轴于点D,求证:ODCABC;(3)若点P为抛物线上的一个动点,过点P作PMx轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由5(2021秋攸县期末)如图,已知直线y2x+4分别交x轴、y轴
9、于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PCx轴于点C,交抛物线于点D(1)若抛物线的解析式为y2x2+2x+4,设其顶点为M,其对称轴交AB于点N求点M和点N的坐标;在抛物线的对称轴上找一点Q,使|AQBQ|的值最大,请直接写出点Q的坐标;是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由6(2022禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,2)三点(1)求出抛物线的解析式;(2)P是抛物线在第一
10、象限上的一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得SDCASABC,直接写出点D的坐标7(2022祥云县模拟)如图,已知抛物线yax2+bx+c过点A(1,0),B(3,0),交y轴于点C(0,3),点M是该抛物线上第一象限内的一个动点,ME垂直x轴于点E,交线段BC于点D,MNx轴,交y轴于点N(1)求抛物线yax2+bx+c的表达式;(2)若四边形MNOE是正方形,求该正方形的边长;(3)连结OD,AC,抛物线上是否
11、存在点M,使得以C,O,D为顶点的三角形与ABC相似,若存在,请求出点M的坐标,若不存在,请说明理由8(2022松江区校级模拟)如图,抛物线yx2bx+c过点B(3,0),C(0,3),D为抛物线的顶点(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求CBD的正切值;(3)点C关于抛物线yx2bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使CDB和BMP相似,若存在,求点P坐标,若不存在,请说明理由9(2022平江县一模)如图,抛物线yax2+bx+8与x轴交于A(2,0)和点B(8,0),与y轴交于
12、点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E(1)求该抛物线的函数表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,设四边形PBOC和AOC的面积分别为S四边形PBOC和SAOC,记SS四边形PBOCSAOC,求S最大值点P的坐标及S的最大值;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与BOC相似?若存在,求点M的坐标;若不存在,请说明理由10(2022莱州市一模)如图,在平面直角坐标系中,抛物线yx2+c经过点A(4,3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,连接PO
13、(1)求抛物线的表达式,并求出顶点B的坐标;(2)试证明:经过点O的P与直线l相切;(3)如图,已知点C的坐标为(1,2),是否存在点P,使得以点P,O及(2)中的切点为顶点的三角形与ABC相似?若存在,求出P点的坐标;若不存在,请说明理由11(2022巩义市模拟)已知,二次函数yax2+bx3 的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(1,0),且 OBOC(1)求二次函数的解析式;(2)当0x4 时,求二次函数的最大值和最小值分别为多少?(3)设点C与点C关于该抛物线的对称轴对称在y轴上是否存在点P,使PCC与POB相似,且PC与PO是对应边?若存在,求
14、出点P的坐标;若不存在,请说明理由12(2022澄迈县模拟)在平面直角坐标系中,抛物线经过点A(2,0),B(3,3)及原点O,顶点为C(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t在图1中,当3t0时,求PBO的面积S与t的函数关系式,并求S的最大值;在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;在图3中,若P是y轴左侧该抛物线上的动点,过点P作PMx轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与BOC相似?若存在,求出点P的坐标;若不存在,请说明理由13(2022丰南区二
15、模)如图、,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180到CED的位置(1)直接写出C的坐标,并求经过O、A、C三点的抛物线的解析式;(2)点P在第四象限的抛物线上,求COP的最大面积;(3)如图,G是以AB为直径的圆,过B点作G的切线与x轴相交于点F,抛物线上是否存在一点M,使得BOF与AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由14(2022莱芜区三模)如图,在平面直角坐标系中,一次函数yx+3的图象与x轴交于点A,与y轴交于点B,二次函数yx2+bx+c的图象经过A
16、和点C(0,3)(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第一象限的图象上,点C的对应点E落在直线AB上,直接写出四边形ACED的形状,并求出此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线CD下方抛物线上一个动点,过点P作PFx轴,交CD于点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与COM相似?若存在,求出线段FP的长度;若不存在,请说明理由15(2022临清市三模)如图,抛物线yx2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点(点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在
17、对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x轴上(1)求抛物线解析式;(2)设点F横坐标为m,用含有m的代数式表示点E的横坐标为 (直接填空);当矩形EFGH为正方形时,求点G的坐标;连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DMx轴于点M,过点F作FPAD于点P,直接写出DFP与DAM相似时,点F的坐标16(2022成都模拟)如图,已知抛物线y(x1)2+k交x轴于A,B两点,交y轴于点C,P是抛物线上的动点,且满足OB3OA(1)求抛物线的解析式;(2)若点P在第一象限,直线yx+b经过点P且与直线BC交于点
18、E,设点P的横坐标为t,当线段PE的长度随着t的增大而减小时,求t的取值范围;(3)如图,过点A作BC的平行线m,与抛物线交于另一点D点P在直线m上方,点Q在线段AD上,若CPQ与AOC相似,且点P与点O是对应点,求点P的坐标17(2022东莞市校级一模)在平面直角坐标系xOy中,已知抛物线yx2+2kx+2k2+1与x轴的左交点为A,右交点为B,与y轴的交点为C,对称轴为直线l,对于抛物线上的两点(x1,y1),(x2,y2)(x1kx2),当x1+x22时,y1y20恒成立(1)求该抛物线的解析式;(2)点M是第二象限内直线AC上方的抛物线上的一点,过点M作MNAC于点N,求线段MN的最大
19、值,并求出此时点M的坐标;(3)点P是直线l右侧抛物线上的一点,PQl于点Q,AP交直线l于点F,是否存在这样的点P,使PQF与ACO相似?若存在,请求出点P的坐标,若不存在,请说明理由18(2022碑林区校级模拟)如图,RtABC中,ACB90,AB8,AC4,以AB所在直线为x轴建立平面直角坐标系,若C(0,2)(1)请直接写出A、B的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)l为抛物线对称轴,P是直线l右侧抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点要使以P、D、E为顶点的三角形与ABC全等,求满足条件的点P,点E的坐标更多两百万份资料的大群、网课教案课件加QQ:763491846,原创原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司