专题10二次函数与圆存在性问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx

上传人:侯** 文档编号:92445357 上传时间:2023-06-04 格式:DOCX 页数:16 大小:681.79KB
返回 下载 相关 举报
专题10二次函数与圆存在性问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx_第1页
第1页 / 共16页
专题10二次函数与圆存在性问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《专题10二次函数与圆存在性问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx》由会员分享,可在线阅读,更多相关《专题10二次函数与圆存在性问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、下载来源:初中数学资料群:795399662,其他科资料群:729826090挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题10二次函数与圆存在性问题 二次函数是初中数学代数部分最重要的概念之一,是中考数学的重难点;而圆是初中几何中综合性最强的知识内容,它与二次函数都在中考中占据及其重要的地位,两者经常作为压轴题综合考查,能够很好的考查学生的数学综合素养以及分析问题、解决问题的能力.圆心与抛物线的关系、圆上的点和抛物线的关系,其本质就是把位置关系向数量化关系转化.二次函数与圆的综合要数形结合,在读题之前要想到圆中的相关概念、性质及定理,比如圆的定义、垂径定理、圆周角、圆心角、内

2、心、外心、切线、四点共圆的、隐藏圆等;对于二次函数,要熟练掌握解析式的求法和表达形式、顶点、最值、与方程之间的关系,线段长与点的坐标之间的数量转化等.【例1】(2022闵行区二模)如图,在平面直角坐标系xOy中,抛物线yax2+bx+4与x轴相交于点A(1,0),B(3,0),与y轴交于点C将抛物线的对称轴沿x轴的正方向平移,平移后交x轴于点D,交线段BC于点E,交抛物线于点F,过点F作直线BC的垂线,垂足为点G(1)求抛物线的表达式;(2)以点G为圆心,BG为半径画G;以点E为圆心,EF为半径画E当G与E内切时试证明EF与EB的数量关系;求点F的坐标【例2】(2022福建模拟)如图,已知抛物

3、线yax2+bx+c与x轴相交于A,B两点,点C(2,4)在抛物线上,且ABC是等腰直角三角形(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论【例3】(2022武汉模拟)已知抛物线y2x2+bx+c(c0)(1)如图1,抛物线与直线l相交于点M(1,0),N(2,6)求抛物线的解析式;过点N作MN的垂线,交抛物线于点P,求PN的长;(2)如图2,已知抛物线y2x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A,B,C,D(0,n)四点在同一圆上,求n的值【例4】(2022上海模拟)在平面直角坐标系xOy中,抛物线

4、yax23ax+2(a0)交y轴于点A,抛物线的对称轴交x轴于点P,联结PA(1)求线段PA的长;(2)如果抛物线的顶点到直线PA的距离为3,求a的值;(3)以点P为圆心、PA为半径的P交y轴的负半轴于点B,第一象限内的点Q在P上,且劣弧2如果抛物线经过点Q,求a的值1(2021广元)如图1,在平面直角坐标系xOy中,抛物线yax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x10123y03430(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(

5、3)如图2,点D是第四象限内抛物线上一动点,过点D作DFx轴,垂足为F,ABD的外接圆与DF相交于点E试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由2(2021张家界)如图,已知二次函数yax2+bx+c的图象经过点C(2,3),且与x轴交于原点及点B(8,0)(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断ABO的形状,试说明理由;(4)若点P为O上的动点,且O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值3(20

6、21宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE(1)求抛物线的表达式;(2)判断BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作C,在C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由4(2020雨花区校级一模)如图1,已知抛物线yax212ax+32a(a0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(1)连接BC,若ABC30,求a的值(2)如图2,已知M为ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有

7、,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数问:是否存在一点P,使得APB达到最大,若存在,求出此时APB的正弦值,若不存在,也请说明理由5(2020汇川区三模)如图,在平面直角坐标系上,一条抛物线yax2+bx+c(a0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MNy轴交抛物线于点N1求线段MN的最大值;2当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当PMN的外接圆圆心Q在PMN的边上时,求点P的坐标6(2021开福区模拟)如图,在平面直角

8、坐标系中,抛物线yx2bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,2)(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,ABD的外接圆圆心为M(如图1),求点M的坐标及M的半径;过点B作M的切线交于点P(如图2),设Q为M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由7(2020天桥区二模)如图,抛物线yax2+bx+c(a0),与x轴交于A(4,0)、O两点,点D(2,2)为抛物线的顶点(1)求该抛物线的解析式;(2)点E为AO的中点

9、,以点E为圆心、以1为半径作E,交x轴于B、C两点,点M为E上一点射线BM交抛物线于点P,设点P的横坐标为m,当tanMBC2时,求m的值;如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由8(2020百色)如图,抛物线的顶点为A(0,2),且经过点B(2,0)以坐标原点O为圆心的圆的半径r,OCAB于点C(1)求抛物线的函数解析式(2)求证:直线AB与O相切(3)已知P为抛物线上一动点,线段PO交O于点M当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长9(2020西藏)在平面直角坐标系中,二次函数yx2

10、+bx+c的图象与x轴交于A(2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点(1)求二次函数的解析式;(2)如图甲,连接AC,PA,PC,若SPAC,求点P的坐标;(3)如图乙,过A,B,P三点作M,过点P作PEx轴,垂足为D,交M于点E点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长10(2020宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点(1)求二次函数的表达式;(2)P为平面内一点,当PMN是等边三角形时,求点P的坐标;(3)在二次

11、函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y1相切若存在,求出点E的坐标,并求E的半径;若不存在,说明理由11(2021嘉兴二模)定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆(1)已知点P(2,2),以P为圆心,为半径作圆请判断P是不是二次函数yx24x+3的坐标圆,并说明理由;(2)已知二次函数yx24x+4图象的顶点为A,坐标圆的圆心为P,如图1,求POA周长的最小值;(3)已知二次函数yax24x+4(0a1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD,如图2若CPD120,求a的值12

12、(2021常州二模)如图1:抛物线yx2+bx+c过点A(1,0),点B(3,0),与y轴交于点C动点E(m,0)(0m3),过点E作直线lx轴,交抛物线于点M(1)求抛物线的解析式及C点坐标;(2)连接BM并延长交y轴于点N,连接AN,OM,若ANOM,求m的值(3)如图2当m1时,P是直线l上的点,以P为圆心,PE为半径的圆交直线l于另一点F(点F在x轴上方),若线段AC上最多存在一个点Q使得FQE90,求点P纵坐标的取值范围13(2021乐山模拟)如图,抛物线yax2+bx+2与直线AB相交于A(1,0),B(3,2),与x轴交于另一点C(1)求抛物线的解析式;(2)在y上是否存在一点E

13、,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作O,D为O上一动点,求DA+DB的最小值14(2021河北区二模)如图,在平面直角坐标系中,抛物线yx2+bx+3的对称轴是直线x2,与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C()求抛物线的解析式及顶点坐标;()M为第一象限内抛物线上的一个点,过点M作MNx轴于点N,交BC于点D,连接CM,当线段CMCD时,求点M的坐标;()以原点O为圆心,AO长为半径作O,点P为O上的一点,连接BP,CP,求2PC+3PB的最小值15(2021长沙模拟)如图,在平面直角坐标系中,抛物线yax

14、2+bx+c(a0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;(2)如图2,延长线段OC至N,使得ON,若OBNONA,且,求抛物线的解析式;(3)如图3,抛物线yax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C的直线l:ykx+m(k0)与抛物线交于点C、D,若在x轴上存在P1、P2,使CP1DCP2D90,求k的取值范围16(2021秋上城区校级期中)如图,已知抛物线yx2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C,M是ABC的外接圆若抛物线的顶

15、点D的坐标为(1,4)(1)求抛物线的解析式,及A、B、C三点的坐标;(2)求M的半径和圆心M的坐标;(3)如图2,在x轴上有点P(7,0),试在直线BC上找点Q,使B、Q、P三点构成的三角形与ABC相似若存在,请直接写出点坐标;若不存在,请说明理由17(2021秋西湖区校级期中)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E

16、关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;(3)点P是“蛋圆”外一点,满足BPC60,当BP最大时,直接写出点P的坐标18(2021雨花区二模)如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B为OD中点(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2MNMB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由19(2020东海县二模)如图,AOB的三个顶点A、O、B分别落在抛物线C1:yx2+x上

17、,点A的坐标为(4,m),点B的坐标为(n,2)(点A在点B的左侧)(1)则m ,n (2)将AOB绕点O逆时针旋转90得到AOB,抛物线C2:yax2+bx+4经过A、B两点,延长OB交抛物线C2于点C,连接AC设OAC的外接圆为M求圆心M的坐标;试直接写出OAC的外接圆M与抛物线C2的交点坐标(A、C除外)20(2022绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3)其中,m0(1)当m1时该二次函数的图象的对称轴是直线 求该二次函数的表达式(2)当|m|x|m|时,若该二次函数的最大值为4,求m的值(3)若同时经过点A、B、C的

18、圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标21(2022炎陵县一模)抛物线:yx2+bx+c与y轴的交点C(0,3),与x轴的交点分别为E、G两点,对称轴方程为x1(1)求抛物线的解析式;(2)如图1,过点C作y轴的垂线交抛物线于另一点D,F为抛物线的对称轴与x轴的交点,P为线段OC上一动点若PDPF,求点P的坐标(3)如图1,如果一个圆经过点O、点G、点C三点,并交于抛物线对称轴右侧x轴的上方于点H,求OHG的度数;(4)如图2,将抛物线向下平移2个单位长度得到新抛物线L,点B是顶点直线ykxk+4(k0)与抛物线L交于点M、N与对称轴交于点G,若BMN的面积等于2,求k的值22(2022杨浦区二模)如图,已知在平面直角坐标系xOy中,抛物线y+bx+c与x轴相交于点A(4,0),与y轴相交于点B(0,3),在x轴上有一动点E(m,0)(0m4),过点E作x轴的垂线交线段AB于点N,交抛物线于点P,过P作PMAB,垂足为点M(1)求这条抛物线的表达式;(2)设PMN的周长为C1,AEN的周长为C2,如果,求点P的坐标;(3)如果以N为圆心,NA为半径的圆与以OB为直径的圆内切,求m的值更多两百万份资料的大群、网课教案课件加QQ:763491846,原创原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁