《【课件】基本立体图形+课件高一下学期人教A版(2019)数学必修第二册.pptx》由会员分享,可在线阅读,更多相关《【课件】基本立体图形+课件高一下学期人教A版(2019)数学必修第二册.pptx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、立体几何是研究现实世界中物体的形状、大小与位置关系的数学学科,空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。走进立体几何的世界,从另一个角度感受数学8.1 基本立体图形1如果我们只考虑物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.任务:只按表面形状将以下空间几何体分成两类,可以分为哪两类?.多面体旋转体176594382101112空间几何体的分类:1.多面体:由若干平面多边形围成的几何体2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所成的封闭几何体定义:由若干个平面多边形围成的几何体叫做多
2、面体.面顶点棱围成多面体的各个多边形叫做多面体的(),相邻两个面的公共边叫做多面体的(),棱与棱的公共点叫做多面体的顶点()面 棱顶点轴:绕之旋转的定直线(如图直线OO)轴定义:由一个平面图形绕它所在的平面内的一条定直线旋转所成的封闭几何体叫做旋转体(1)有两个面互相平行,(2)其余各面都是四边形,(3)每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱(prism)。有两个面是对应边平行的全等多边形,其余面都是平行四边形的几何体是否是棱柱?问题1:有两个面互相平行,其余各面都是四边形的几何体是棱柱吗?答:不一定是问题2:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?
3、答:不一定是底面侧面侧棱顶点A BCDEA1B1C1D1 E12.棱柱各部分名称 棱柱的分类:(法一)棱柱的底面可以是三角形、四边形、五边形、我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、棱柱的分类2:按侧棱是否垂直底面斜棱柱棱柱正棱柱 其它直棱柱直棱柱侧棱不垂直于底面侧棱垂直于底面底面是正多边形常见的棱柱名称(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)
4、正方体:棱长都相等的长方体叫做正方体.观察下面的几何体,哪些是棱柱?(4)(1)(2)(3)(5)(6)(7)题型一棱柱的结构特征【例1】下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案D观察下列多面体,有什么相同点?1.1.棱锥定义棱锥定义一般地,有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥棱锥的底面棱锥的侧面棱锥的顶点棱锥的侧棱SA BCDEO2.棱锥各部分名称S3、棱锥的分类:按底面
5、多边形的边数,可以分为三棱锥、四棱锥、五棱锥、ABCDS4、棱锥的表示法:用表示顶点和底面的字母表示,如:四棱锥S-ABCD。三棱锥又叫四面体.特别的由四个全等的正三角形围成的封闭几何体为正四面体。ACB BAEDCSOSA BCDE正棱锥的性质1.各侧棱相等,各个侧面是全等的等腰三角形,各等腰三角形底边上的高相等,它叫做正棱锥的斜高。2.棱锥的高、斜高、和斜高在底面上的投影 组成一个直角三角形 棱锥的高、侧棱、和侧棱在底面上的投影 也组成一个直角三角形底面是正多边形且顶点在底面的投影是底面的中心的棱锥是正棱锥正棱锥正多面体:定义:每个面都是有相同边数正多边形,且以每个顶点为其一端都有相同数目
6、的棱的凸多面体,叫做正多面体。棱台的结构特征定义:用一个平行于棱锥底面的的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.上底面下底面四棱台上底面下底面侧面侧棱顶点2、由三棱锥、四棱锥、五棱锥截得的棱台,分别叫做三棱台,四棱台,五棱台3、棱台的表示法:棱台用表示上、下底面各顶点的字母来表示,棱台ABCD-A1B1C1D1。题型二棱锥、棱台的结构特征【例2】(1)下列三种叙述,正确的有()用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;两个面平行且相似,其余各面都是梯形的多面体是棱台;有 两 个 面 互 相 平 行,其 余 四 个 面 都 是 等 腰 梯 形 的 六 面 体 是棱台.A.0 个 B.1 个 C.2 个 D.3 个(2)下列说法中,正确的是()棱锥的各个侧面都是三角形;四面体的任何一个面都可以作为棱锥的底面;棱锥的侧棱平行.A.B.C.D.BA3、下列图中,不是正方体的表面展开图的是()A BCDC4、下图不是棱柱的展开图的是()A BC DC思考:1.当底面发生变化时,它们能否相互转化?上底面缩小,与下底面相似上底面缩小为一个点上底面扩大,与下底面全等2.用平行于底面的平面截棱柱、棱锥、棱台的截面是怎么样的?过不相邻的两侧棱的截面又是什么?顶点扩大,得到上底面 与下底面相似作业1.练习册(分层要求)+活页8.1.1;2.预习教材及练习册8.1.2节.