《有理数的加法第2课时ppt课件 .ppt》由会员分享,可在线阅读,更多相关《有理数的加法第2课时ppt课件 .ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.3.1有理数的加法有理数的加法第第2课课时时1 1、同号两数相加,取相同的符号,并、同号两数相加,取相同的符号,并 把绝对值相加。把绝对值相加。2 2、异号两数相加,取绝对值较大的加、异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去数的符号,并用较大的绝对值减去 较小的绝对值。较小的绝对值。3 3、互为相反数的两个数相加得、互为相反数的两个数相加得0 0。4 4、一个数同、一个数同0 0相加,仍得这个数。相加,仍得这个数。有理数加法法则有理数加法法则 分析特征分析特征 强化理解强化理解 总结步骤总结步骤 (-4)+(-8)=-(4 +8)=-12 同号同号两数相加两数相加 取
2、相同符号取相同符号 两个加数的绝对值两个加数的绝对值 相加相加 (-9)+(+2)=-(9-2)=-7 异号异号两数相加两数相加 取绝对值较大取绝对值较大 两个加数的绝对值两个加数的绝对值 的符号的符号 由大的由大的减去减去小的小的同号两数之和同号两数之和这是名符其实的和,做加法。这是名符其实的和,做加法。异号两数之和异号两数之和表面上叫表面上叫“和和”,其实是做减法。,其实是做减法。有理数中的有理数中的“和和”与小学算术中与小学算术中“和和”的比较的比较 和的符号和的符号 和与加数关系和与加数关系算术中的算术中的“和和”不谈符号,通常是正数不谈符号,通常是正数比两个加数都大或相等比两个加数都
3、大或相等有理数中的有理数中的“和和”可正、可正、可负、可负、可为零可为零 可能比两个加数都大可能比两个加数都大 可能比两个加数都小可能比两个加数都小 可能大于其中一个而可能大于其中一个而小于另一个加数小于另一个加数结果结果 类型类型 结论:结论:在有理数运算中,算术中的某些结论不一定再成立。在有理数运算中,算术中的某些结论不一定再成立。对比异同对比异同 强化记忆强化记忆有理数中的有理数中的“和和”与小学算术中与小学算术中“和和”的比较的比较运算步骤运算步骤再确定和的符号;后进行绝对值的加减运算先判断类型 (同号、异号等);做一做做一做 (口答)确定下列各题中和的符号,(口答)确定下列各题中和的
4、符号,并计算并计算:(1)(+5)+(+7)(2)(10)+(+3)(3)(+6)+(5)(4)0+(5)(11)+(9)(6)(3.5)+(+7)(7)(1.08)+0 (8)(+)+()=12=-7=1=-20=3.5=-1.08=0(1)()(-9.18)+6.18(2)6.18+(-9.18)(3)()(-2.37)+(-4.63)(4)()(-4.63)+(-2.37)=-=-3=-7=-7加法交换律:加法交换律:两个数相加,交换加数的位置,和不变。两个数相加,交换加数的位置,和不变。a+b=b+a(1)8+(5)+(4)(2)8+(5)+(4)(3)(7)+(10)+(11)(4)
5、(7)+(10)+(11)(5)(22)+(27)+(+27)(6)(22)+(27)+(+27)=-1=-1=-28=-28=-22=-22加法结合律:加法结合律:三个数相加,先三个数相加,先把前两个数相加,或者先把后把前两个数相加,或者先把后两个数相加,和不变两个数相加,和不变(a+b)+c=a+(b+c)一般地,任意若干个数相加,无论各一般地,任意若干个数相加,无论各数相加的先后次序如何,其和都不变。数相加的先后次序如何,其和都不变。(1 1)15+15+(-13-13)+18+18(2 2)(-2.48)+4.33+(-7.52)+(-2.48)+4.33+(-7.52)+(4.33)
6、4.33)(3)例例1 1计算计算解解:原式原式=(15+18)+(-13)=(15+18)+(-13)=33+(-13)=33+(-13)=20=20解解:原式原式=(-2.48)+(-7.52)+(+4.33)+(-4.33)=(-2.48)+(-7.52)+(+4.33)+(-4.33)=(-10)+0=(-10)+0=-10=-10使用运算律通常有下列情形:使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;互为相反数的两个数可先相加;(2)几个数相加得整数时几个数相加得整数时,可先相加;可先相加;(3)同分母的分数可以先相加;同分母的分数可以先相加;(4)符号相同的数可以先相
7、加。符号相同的数可以先相加。例例210袋小麦称后记录如下袋小麦称后记录如下:(单位:(单位:kg):):91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.10袋小麦一共多少千克?如果每袋小麦袋小麦一共多少千克?如果每袋小麦以以90千克为标准,千克为标准,10袋小麦总计超过多少千袋小麦总计超过多少千克或不足多少千克?克或不足多少千克?10袋小麦一共多少千克:解法1:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克:再计算总计超过多少千克:905.49010=5.4解法2解:我们以每袋小麦
8、以解:我们以每袋小麦以90千克为标准,则千克为标准,则10袋小麦可记袋小麦可记为:为:答:答:10袋小麦一共袋小麦一共905.4千克,总计超过千克,总计超过5.4千克千克.1,1,1.5,-1,1.2,1.3,-1.3,-1.2,1.8,1.1它们的和为:它们的和为:1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.15.49010+5.4905.4,活动与探究活动与探究某工厂某周计划每日生产自行车某工厂某周计划每日生产自行车100辆,由于辆,由于工人实行轮休,每日上班人数不一定相等,工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表实际每日生产量与计划量
9、相比情况如下表(增加的为正数,减少的为负数):(增加的为正数,减少的为负数):(1)生产量最多一天比生产量最少的一天多生产)生产量最多一天比生产量最少的一天多生产了多少辆?了多少辆?(2)本周总生产量是多少?是增加了还是减少了)本周总生产量是多少?是增加了还是减少了?增减数为多少?增减数为多少?小明遥控一辆玩具赛车,让它从小明遥控一辆玩具赛车,让它从A地出发,先向东行驶地出发,先向东行驶15m,再向西行驶,再向西行驶25m,然后又向东行驶,然后又向东行驶20m,再向西行,再向西行驶驶35m,问玩具赛车最后停在何处?一,问玩具赛车最后停在何处?一共行驶了多少米?共行驶了多少米?例例3 3解解:记
10、向东为正记向东为正,根据题意得根据题意得:(1)、(+15)+(-25)+(+20)+(-35)=-25(2)、|+15|+|-25|+|+20|+|-35|=95答:小明的遥控车最后停在小明的西边答:小明的遥控车最后停在小明的西边25米处,米处,一共行驶了一共行驶了95千米。千米。1.用简便方法计算:用简便方法计算:(1)(+45.3)+(-9.5)+(+4.7)(2)(+2.5)+(+3 )+(+1 )+1561216练习练习1 12.蚂蚁从某点蚂蚁从某点O出发在一条直线上来回爬行,出发在一条直线上来回爬行,假定向右爬行的路程为正数,向左爬行的路程假定向右爬行的路程为正数,向左爬行的路程为
11、负数,爬过的各段路程依次为(单位:厘米)为负数,爬过的各段路程依次为(单位:厘米)+6,-3,+10,-5,-7,+13,-10(1)蚂蚁最后是否回到了出发点?)蚂蚁最后是否回到了出发点?(2)蚂蚁离开出发点)蚂蚁离开出发点O最远是多少厘米?最远是多少厘米?(3)在爬行过程中,如果爬行)在爬行过程中,如果爬行1厘米奖励一粒厘米奖励一粒芝麻,则蚂蚁一共得到多少粒芝麻?芝麻,则蚂蚁一共得到多少粒芝麻?+413厘米厘米54粒粒 用用“”或或“”符号填空符号填空 (1)如果如果a0,b0,那么,那么a+b_0;(2)如果如果a0,b0,b|b|,那么,那么a+b_0;(4)如果如果a0,|a|b|,那
12、么,那么a+b_0;探究探究小小结结一、加法的运算律一、加法的运算律1、加法交换律:、加法交换律:两个数相加,交换加数的位置,和不变。两个数相加,交换加数的位置,和不变。a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变者先把后两个数相加,和不变.(a+b)+c=a+(b+c)二、使用运算律通常有下列情形:二、使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;互为相反数的两个数可先相加;(2)几个数相加得整数时几个数相加得整数时,可先相加;可先相加;(3)同分母的分数可以先相加;同分母的分数可以先相加;(4)符号相同的数可以先相加。符号相同的数可以先相加。