《[理学]大学普通物理-第11章-稳恒磁场课件.ppt》由会员分享,可在线阅读,更多相关《[理学]大学普通物理-第11章-稳恒磁场课件.ppt(75页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十一章 稳恒磁场 掌握描述磁场的物理量磁感强度的概念,理解它是矢量点函数.理解毕奥萨伐尔定律,能利用它计算一些简单问题中的磁感强度.理解稳恒磁场的高斯定理和安培环路定理.理解用安培环路定理计算磁感强度的条件和方法.理解洛伦兹力和安培力的公式,能分析电荷在均匀电场和磁场中的受力和运动.了解磁矩的概念.能计算简单几何形状载流导体和载流平面线圈在均匀磁场中或在无限长载流直导体产生的非均匀磁场中所受的力和力矩.教学基本要求教学基本要求1一 磁 场运动电荷 运动电荷磁场二 磁 感 强 度 的 定 义+带电粒子在磁场中运动所受的力与运动方向有关.实验发现带电粒子在磁场中沿某一特定直线方向运动时不受力,此
2、直线方向与电荷无关.+11-1 稳恒磁场2 带电粒子在磁场中沿其他方向运动时 垂直于 与特定直线所组成的平面.当带电粒子在磁场中垂直于此特定直线运动时受力最大.大小与 无关 磁感强度 的定义:当正电荷垂直于 特定直线运动时,受力 将 方向定义为该点的 的方向.11-1 稳恒磁场3单位 特斯拉+磁感强度 的定义:当正电荷垂直于特定直线运动时,受力 将 方向定义为该点的 的方向.磁感强度大小运动电荷在磁场中受力11-1 稳恒磁场4P*一 毕奥萨伐尔定律(电流元在空间产生的磁场)真空磁导率 任意载流导线在点 P 处的磁感强度磁感强度叠加原理11-2 毕奥-萨伐尔定律512345678例 判断下列各点
3、磁感强度的方向和大小.+1、5 点:3、7点:2、4、6、8 点:毕奥萨伐尔定律11-2 毕奥-萨伐尔定律6PCD*例1 载流长直导线的磁场.解 方向均沿 x 轴的负方向二 毕奥-萨伐尔定律应用举例11-2 毕奥-萨伐尔定律7 的方向沿 x 轴的负方向.无限长载流长直导线的磁场.PCD+11-2 毕奥-萨伐尔定律8IB 电流与磁感强度成右螺旋关系半无限长载流长直导线的磁场 无限长载流长直导线的磁场*PIBX11-2 毕奥-萨伐尔定律9I 真空中,半径为R 的载流导线,通有电流I,称圆电流.求其轴线上一点 p 的磁感强度的方向和大小.解 根据对称性分析例2 圆形载流导线的磁场.p*11-2 毕奥
4、-萨伐尔定律10p*11-2 毕奥-萨伐尔定律1 1 3)4)2)的方向不变(和 成右螺旋关系)1)若线圈有 匝讨论*11-2 毕奥-萨伐尔定律12oI(5)*Ad(4)*o(2R)I+R(3)oIIRo(1)x11-2 毕奥-萨伐尔定律13IS三 磁偶极矩IS 说明:只有当圆形电流的面积S很小,或场点距圆电流很远时,才能把圆电流叫做磁偶极子.例2中圆电流磁感强度公式也可写成11-2 毕奥-萨伐尔定律14+pR+*例3 载流直螺线管的磁场 如图所示,有一长为l,半径为R的载流密绕直螺线管,螺线管的总匝数为N,通有电流I.设把螺线管放在真空中,求管内轴线上一点处的磁感强度.解 由圆形电流磁场公式
5、o11-2 毕奥-萨伐尔定律15op+11-2 毕奥-萨伐尔定律16 讨 论(1)P点位于管内轴线中点若11-2 毕奥-萨伐尔定律17(2)无限长的螺线管(3)半无限长螺线管或由 代入xBO11-2 毕奥-萨伐尔定律18+四 运动电荷的磁场毕 萨定律 运动电荷的磁场实用条件+S11-2 毕奥-萨伐尔定律19解法一 圆电流的磁场向外 例4 半径 为 的带电薄圆盘的电荷面密度为,并以角速度 绕通过盘心垂直于盘面的轴转动,求圆盘中心的磁感强度.向内11-2 毕奥-萨伐尔定律20解法二 运动电荷的磁场11-2 毕奥-萨伐尔定律21一 磁 感 线 规定:曲线上每一点的切线方向就是该点的磁感强度 B 的方
6、向,曲线的疏密程度表示该点的磁感强度 B 的大小.III11-3 磁通量 磁场的高斯定理22二 磁通量 磁场的高斯定理SNISNI磁场中某点处垂直 矢量的单位面积上通过的磁感线数目等于该点 的数值.11-3 磁通量 磁场的高斯定理23 磁通量:通过某一曲面的磁感线数为通过此曲面的磁通量.单位11-3 磁通量 磁场的高斯定理24 物理意义:通过任意闭合曲面的磁通量必等于零(故磁场是无源的.)磁场高斯定理11-3 磁通量 磁场的高斯定理25 例 如图载流长直导线的电流为,试求通过矩形面积的磁通量.解 先求,对变磁场给出 后积分求11-3 磁通量 磁场的高斯定理26一 安培环路定理o 设闭合回路 为
7、圆形回路(与 成右螺旋)载流长直导线的磁感强度为11-4 安培环路定理27o若回路绕向化为逆时针时,则对任意形状的回路 与 成右螺旋11-4 安培环路定理28电流在回路之外11-4 安培环路定理29 多电流情况 以上结果对任意形状的闭合电流(伸向无限远的电流)均成立.安培环路定理11-4 安培环路定理30安培环路定理 即在真空的稳恒磁场中,磁感应强度 沿任一闭合路径的积分的值,等于 乘以该闭合路径所包围的各电流的代数和.电流 正负的规定:与 成右螺旋时,为正;反之为负.注意11-4 安培环路定理31 问 1)是否与回路 外电流有关?2)若,是否回路 上各处?是否回路 内无电流穿过?11-4 安
8、培环路定理32二 安培环路定理的应用举例 例1 求长直密绕螺线管内磁场 解 1)对称性分析螺旋管内为均匀场,方向沿轴向,外部磁感强度趋于零,即.11-4 安培环路定理33 无限长载流螺线管内部磁场处处相等,外部磁场为零.2)选回路.+磁场 的方向与电流 成右螺旋.MNP O11-4 安培环路定理34当 时,螺绕环内可视为均匀场.例2 求载流螺绕环内的磁场2)选回路.解 1)对称性分析;环内 线为同心圆,环外 为零.令11-4 安培环路定理35例3 无限长载流圆柱体的磁场解 1)对称性分析 2)选取回路.11-4 安培环路定理36 的方向与 成右螺旋11-4 安培环路定理37例4 无限长载流圆柱
9、面的磁场解11-4 安培环路定理38一 带电粒子在电场和磁场中所受的力电场力磁场力(洛仑兹力)+运动电荷在电场和磁场中受的力 方向:即以右手四指 由经小于 的角弯向,拇指的指向就是正电荷所受洛仑兹力的方向.11-5 带电粒子在电场和磁场中的运动39 例 1 一质子沿着与磁场垂直的方向运动,在某点它的速率为.由实验测得这时质子所受的洛仑兹力为.求该点的磁感强度的 大小.解 由于 与垂直,可得问 1)洛仑兹力作不作功?2)负电荷所受的洛仑兹力方向?11-5 带电粒子在电场和磁场中的运动40二 带电粒子在磁场中运动举例1.回旋半径和回旋频率11-5 带电粒子在电场和磁场中的运动412.电子的反粒子
10、电子偶显示正电子存在的云室照片及其摹描图铝板正电子电子1930年狄拉克预言自然界存在正电子11-5 带电粒子在电场和磁场中的运动423.磁聚焦(洛仑兹力不做功)洛仑兹力 与 不垂直螺距11-5 带电粒子在电场和磁场中的运动43 应用 电子光学,电子显微镜等.磁聚焦 在均匀磁场中某点 A 发射一束初速相差不大的带电粒子,它们的 与 之间的夹角 不尽相同,但都较小,这些粒子沿半径不同的螺旋线运动,因螺距近似相等,都相交于屏上同一点,此现象称之为磁聚焦.11-5 带电粒子在电场和磁场中的运动44.+-A AK+dL.三 带电粒子在电场和磁场中运动举例1.电子比荷的测定速度选择器11-5 带电粒子在电
11、场和磁场中的运动45dL+-o11-5 带电粒子在电场和磁场中的运动46dL+-o11-5 带电粒子在电场和磁场中的运动47dL+-o上述计算 的条件电子比荷11-5 带电粒子在电场和磁场中的运动482.质谱仪7072 73 74 76锗的质谱.+-速度选择器照相底片质谱仪的示意图11-5 带电粒子在电场和磁场中的运动493.回旋加速器 1932年劳伦斯研制第一台回旋加速器的D型室.此加速器可将质子和氘核加速到1MeV的能量,为此1939年劳伦斯获得诺贝尔物理学奖.11-5 带电粒子在电场和磁场中的运动50频率与半径无关到半圆盒边缘时回旋加速器原理图NSBON11-5 带电粒子在电场和磁场中的
12、运动51 我国于1994年建成的第一台强流质子加速器,可产生数十种中短寿命放射性同位素.11-5 带电粒子在电场和磁场中的运动52 例 2 有一回旋加 速器,他 的交变 电压的 频率为,半圆形电极的半径为0.532m.问 加速氘核所需的磁感应强度为多大?氘核所能达到的最大动能为多大?其最大速率有多大?(已知氘核的质量为,电荷为).解 由粒子的回旋频率公式,可得11-5 带电粒子在电场和磁场中的运动53霍 耳 效 应4.霍耳效应11-5 带电粒子在电场和磁场中的运动54I霍耳电压霍耳系数+-11-5 带电粒子在电场和磁场中的运动55 量子霍尔效应(1980年)霍耳电阻11-5 带电粒子在电场和磁
13、场中的运动56I+-P 型半导体+-霍耳效应的应用2)测量磁场霍耳电压1)判断半导体的类型+-N 型半导体-I+-11-5 带电粒子在电场和磁场中的运动57S一 安 培 力洛伦兹力 由于自由电子与晶格之间的相互作用,使导线在宏观上看起来受到了磁场的作用力.安培定律 磁场对电流元的作用力11-6 载流导线在磁场中所受的力58 有限长载流导线所受的安培力 安培定律 意义 磁场对电流元作用的力,在数值上等于电流元 的大小、电流元所在处的磁感强度 大小以及电流元和磁感应强度之间的夹角 的正弦之乘积,垂直于 和 所组成的平面,且 与 同向.11-6 载流导线在磁场中所受的力59ABCo根据对称性分析解
14、例 1 如图一通有电流 的闭合回路放在磁感应强度为 的均匀磁场中,回路平面与磁感强度 垂直.回路由直导线 AB 和半径为 的圆弧导线 BCA 组成,电流为顺时针方向,求磁场作用于闭合导线的力.11-6 载流导线在磁场中所受的力60ACoB因由于故11-6 载流导线在磁场中所受的力61PL解 取一段电流元 结论 任意平面载流导线在均匀磁场中所受的力,与其始点和终点相同的载流直导线所受的磁场力相同.例 2 求 如图不规则的平面载流导线在均匀磁场中所受的力,已知 和.11-6 载流导线在磁场中所受的力62OdR 例 3 半径为 载有电流 的导体圆环与电流为 的长直导线 放在同一平面内(如图),直导线
15、与圆心相距为 d,且 R d 两者间绝缘,求 作用在圆电流上的磁场力.解.11-6 载流导线在磁场中所受的力63OdR.11-6 载流导线在磁场中所受的力64OdR.11-6 载流导线在磁场中所受的力65二 电流的单位 两无限长平行载流直导线间的相互作用11-6 载流导线在磁场中所受的力66 国际单位制中电流单位安培的定义 在真空中两平行长直导线相距 1 m,通有大小相等、方向相同的电流,当两导线每单位长度上的吸引力为 时,规定这时的电流为 1 A(安培).问 若两直导线电流方向相反二者之间的作用力如何?可得11-6 载流导线在磁场中所受的力67 M,N O,PMNOPI一 磁场作用于载流线圈
16、的磁力矩如图 均匀磁场中有一矩形载流线圈MNOP11-7 磁场对载流线圈的作用68线圈有N匝时MNOPI M,N O,P11-7 磁场对载流线圈的作用69IB.IB B+I稳定平衡 不稳定平衡讨 论1)方向与 相同2)方向相反3)方向垂直力矩最大11-7 磁场对载流线圈的作用70 结论:均匀磁场中,任意形状刚性闭合平面通电线圈所受的力和力矩为与 成右螺旋0p qq=稳定平衡非稳定平衡 磁矩11-7 磁场对载流线圈的作用71 例1 边长为0.2m的正方形线圈,共有50 匝,通以电流2A,把线圈放在磁感应强度为 0.05T的均匀磁场中.问在什么方位时,线圈所受的磁力矩最大?磁力矩等于多少?解 得问 如果是任意形状载流线圈,结果如何?11-7 磁场对载流线圈的作用72IRQJKPo 例2 如图半径为0.20m,电流为20A,可绕轴旋转的圆形载流线圈放在均匀磁场中,磁感应强度的大小为0.08T,方向沿 x 轴正向.问线圈受力情况怎样?线圈所受的磁力矩又为多少?解 把线圈分为JQP和PKJ两部分以 为轴,所受磁力矩大小11-7 磁场对载流线圈的作用73IRQJKPo11-7 磁场对载流线圈的作用74二 磁电式电流计原理实验测定 游丝的反抗力矩与线圈转过的角度成正比.N S磁铁11-7 磁场对载流线圈的作用75