《开关电源拓扑结构概述(完整版)实用资料.doc》由会员分享,可在线阅读,更多相关《开关电源拓扑结构概述(完整版)实用资料.doc(125页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、开关电源拓扑结构概述(完整版)实用资料(可以直接使用,可编辑 完整版实用资料,欢迎下载)主回路开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。开关电源主回路可以分为隔离式与非隔离式两大类型。1. 非隔离式电路的类型:非隔离输入端与输出端电气相通,没有隔离。1.1. 串联式结构串联在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载R
2、L四者成串联连接的关系。开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对
3、负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续
4、流二极管D的负极流出,最后回到反电动势eL的负极。对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。串联式开关电源输出电压uo的平均值Ua为:1.2. 并联式结构并联在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并
5、同时对电容器C充电。 由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。例如boots拓扑型的开关电源就是属于并联型式的开关电源。并联开关电源输出电压Uo为:boots拓扑输出电压Uo:Uo=Ui(1+D/1-D)=Ui(1/1-D)(D 为占空比)输出电压与输入电压的极性相反。电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。(也是串联式开关电源的一种,一般又称为反转式串联开关电源) 开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输
6、入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。反转式串联开关电源输出电压Uo为:由(1-27)式可以看出,反转式串联开关电源输出电压与输入电压与开关接通的时间成正比,与开关关断的时间成反比。2. 隔离式电路的类型:隔离输入端与输出端电气不相通,通过脉冲变压器的磁偶合方式传递能量,输入输出完全电气隔离。2.1. 单端正激式 single Forward Converter(又叫单端
7、正激式变压器开关电源 )单端通过一只开关器件单向驱动脉冲变压器(又叫单激)双激式(双端)变压器开关电源:所谓双激式变压器开关电源,就是指在一个工作周期之内,变压器的初级线圈分别被直流电压正、反激励两次。与单激式变压器开关电源不同,双激式变压器开关电源一般在整个工作周期之内,都向负载提供功率输出。双激式变压器开关电源输出功率一般都很大,因此,双激式变压器开关电源在一些中、大型电子设备中应用很广泛。这种大功率双激式变压器开关电源最大输出功率可以达300瓦以上,甚至可以超过1000瓦。推挽式、半桥式、全桥式等变压器开关电源都属于双激式变压器开关电源。)(单激式变压器开关电源普遍应用于小功率电子设备之
8、中,因此,单激式变压器开关电源应用非常广泛。而双激式变压器开关电源一般用于功率较大的电子设备之中,并且电路一般也要复杂一些。单激式变压器开关电源的缺点是变压器的体积比双激式变压器开关电源的激式变压器的体积大,因为单激式开关电源的变压器的磁芯只工作在磁回路曲线的单端,磁回路曲线变化的面积很小。)正激式:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。目前属于这种模式的开关电源有:串联式开关电源,buck拓扑结构开关电源,激式变压器开关电源、推免式、半桥式、全桥式都属于正激式模式。反激式:就是在开关管导通的时候存储能量,只有在开关管关断的时候释
9、放才向负载释放能量。属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。正激变压器脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。(正激式变压器开关电源是推免式变压器开关电源衍生过来的,推免式有两个控制开关,正激式改成一个开关控制。) U1是开关电源的输入电压,N是开关变压器,T是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,RL是负载电阻。(对于加不加N3和D3主要
10、由设计者来决定,如果不加N3和D3就得在变压器初级线圈N1的两端并联一个RC电路,用来吸收变压器产生的反激式输出能量,要么变压器初级线圈产生的反电动势非常高,很容易把电源开关管击穿。这个反激式能量很大,如果用RC电路来吸收,能量会白白的浪费掉,使开关电源的工作效率大大下降。因此,如果你不考虑工作效率,也可以不加N3和D3,而加一个RC电路。)工作原理:开关管T导通时,D1也导通,这时电网向负载传送能量,滤波电感储存能量;当开关管T截止时,电感通过续流二极管D2 继续向负载释放能量。在上图中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,上图就不再
11、是正激式变压器开关电源了该电路的最大问题是:开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。优点:1)正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好。2)正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。(说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。) 缺点:1)电路中比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。 2)正激式变压器开关电源的变压器的体积要比
12、反激式变压器开关电源的变压器的体积大。 3)变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。(一般正激式变压器开关电源都设置有一个反电动势能量吸收回路,如的变压器反馈线圈N3绕组和整流二极管D3。由于反电动势电压高因此,正激式变压器开关电源在输入电压为交流220伏的设备中很少使用,或者用两个电源开关管串联来使用)2.2. 单端反激式 Single F1yback Converter(单端反激式变压器开关电源) 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载
13、提供功率输出,这种变压器开关电源称为反激式开关电源。工作原理:当开关K 关闭时,变压器初级N1有电流 Ip,并将能量储存于其中(e1 = L1di/dt =Ui 或者e1 = N1d/dt = Ui).由于N1与N2极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关K打开 时,由楞次定律 : (e = -N/T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通 反激式变压器开关电源的输出电压为:(1-110)式中,Uo为反激式变压器开关电源的输出电压,Ui变压器初级线圈输入电压,D为控制开关的占空比,n为变压器次级线圈与初级线圈的匝数比。一、反激式转换
14、器的优点有: 1. 电路简单比正反激式少用一个大储能滤波电感,以及一个续流二极管,因此,反激式的体积要比正激式变压器开关电源的体积小,且成本也要降低。且能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 电压和电流输出特性要比正激式变压器开关电源差,输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工
15、作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.2.3. 推挽 Push pull (变压器中心抽头)式这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。 主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。主要缺点:变压器绕组利
16、用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。2.4. 全桥式 Full Bridge Converter这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。 图中T1、T4为一对,由同一组信号驱动,同时导通/关端;T2、T3为另一对,由另一组信号驱动,同时导通/关端。两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1KW以上超大功率开关电源电路中。2.5. 半桥式 Half
17、Bridge Converter电路的结构类似于全桥式,只是把其中的两只开关管(T3、T4)换成了两只等值大电容C1、C2。 主要优点:具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十瓦到千瓦都可以;开关管耐压要求较低;电路成本比全桥电路低等。这种电路常常被用于各种非稳压输出的DC变换器,如电子荧光灯驱动电路中。谐振式开关电源在脉冲调制电路中,加入C、L谐振电路,使得流过开关的电流及管子两端的压降为准正弦波。这种开关电源成为谐振式开关电源。利用一定的控制技术,可以实现开关管在电流或电压波形过零时切换,这样对缩小电源体积,增大电源控制能力,提高开关速度,改善纹波都有极
18、大好处。所以谐振开关电源是当前开关电源发展的主流技术。又分为:1ZCS零电流开关。开关管在零电流时关断。2ZVS零电压开关。开关管在零电压时关断。 串并联谐振(SPRC,也叫LCC谐振)对于谐振变换来讲,串联谐振(SRC),并联谐振(PRC),以及串并联谐振(SPRC,也叫LCC谐振)是三种主要的流行拓扑结构。这三种拓扑的分析和设计已经非常系统。下面将研究这三种拓扑在前端变换中的应用。 DCDC电源变换器的拓扑类型0 引言 本文的第一部分为“DCDC电源变换器拓扑的分类”,第二部分是在参考美国TI公司资料的基础上撰写而成的,新增加了各种DCDC电源变换器的主要特点及PWM控制器的典型产品,另外
19、还按照目标对电路结构、波形参数和汁算公式中的物理量作了统一。本文的特点足以表格形式归纳了常见DCDC电源变换器的拓扑结构这对电源专业的广大技术人员是一份不可多得的技术资料。1 DCDC电源变换器拓扑结构的分类 DCDC电源变换器的拓扑类型主要有以下13种: (1)Buck Converter降压式变换器; (2)Boost Conyerter升压式变换器; (3)BuckBoost Converter降压/升压式变换器,含极性反转(Inverting)式变换器; (4)Cuk Converter升压,升压串联式变换器; (5)SEPIC(Single Endcd Pdimary Inducto
20、r Converter)单端一次侧电感式变换器; (6)F1yback Converter反激式(亦称回扫式)变换器; (7)Forward Converter正激式变换器: (8)Double Switches Forward Converter双开关正激式变换器; (9)Active Clamp Forward Converter有源箝位 (0)Half Bridge Converter半桥式变换器; (11)Full Bridge Converter全桥式变换器; (12)Push pull Convener推挽式变换器: (13)Phase Shift Switching ZVT(Ph
21、ase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。2 常见DCDC电源变换器的拓扑类型 常见DC/DC电源变换器的拓扑类型见表1表3所列。表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。PWM表示脉宽调制波形,U1为直流输入电压,UDS为功率丌关管S1(MOSFFT)的漏一源极电压。ID1为S1的漏极电流。IF1为D1的工作电流,U0为输出电压,IL为负载电流。T为周期,t为UO呈高电平(或低电平)的时间及开关导通时间,D为占空比,有关系式:D=t/T。C1、C2均为输入端滤波电容,CO为输
22、出端滤波电容,L1、L2为电感。上海松江松汇中路880号IBM P570 开关电源模块健康检查施耐德接触器机器型号为9117-570.由于近期各地市公司的P570的电源模块,发生故障频繁,为防患于未然,尽早发现电源模块的问题,并且尽早通知省公司协同相关厂商解决问题。请个地市系统管理员参考一下图示,检查P570机器背后电源模块的状态等情况,进行电源模块的健康情况检查。图(一)从P570背面看,每个P570的笼子(draw)的右边有两个电源模块。各地市P570一台主机有4个draw,每个draw是4U机柜的高度。图(二)P570电源模块外形在电源模块的背后有LED指示灯。 指示灯在电源模块的左下角
23、 meanfirst green is AC goodsecond green is DC goodamber(黄色) is fault or for identification开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!)一、 开关电源的电路组成/b:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下:二、 输入电路的原理及常见电路/b:1、AC输入整流滤波电路原理: 防雷电路:当
24、有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 输入滤波电路:C1、L1、C2、C3组成的双型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能
25、量非常小,后级电路可正常工作。 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。2、 DC输入滤波电路原理: 输入滤波电路:C1、L1、C2组成的双型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,
26、在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。三、 功率变换电路/b:1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。2、 常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击
27、穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断 。R1和Q1中的结电容CGS、CGD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多;当Q1截止
28、时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。IC根据输出电压和电流时刻调整着脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。C4和R6为尖峰电压吸收回路。4、推挽式功率变换电路:Q1和Q2将轮流导通。5、有驱动变压器的功率变换电路:T2为驱动变压器,T1为开关变压器,TR1为电流环。四、 输出整流滤波电路/b:1、 正激式整流电路: T1为开关变压器,其初极和次极的相位同相。D1为整流二极管,D2为续流二极管,R1、C1、R2、C2为削尖峰电路。L1为续流电感,C4、L2、C5组成型滤波器。2、 反激式整流电路
29、: T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、C1为削尖峰电路。L1为续流电感,R2为假负载,C4、L2、C5组成型滤波器。3、 同步整流电路: 工作原理:当变压器次级上端为正时,电流经C2、R5、R6、R7使Q2导通,电路构成回路,Q2为整流管。Q1栅极由于处于反偏而截止。当变压器次级下端为正时,电流经C3、R4、R2使Q1导通,Q1为续流管。Q2栅极由于处于反偏而截止。L2为续流电感,C6、L1、C7组成型滤波器。R1、C1、R9、C4为削尖峰电路。五、 稳压环路原理/b:1、反馈电路原理图: 2、工作原理:当输出U0升高,经取样电阻R7、R8、R10、VR1分压后
30、,U1脚电压升高,当其超过U1脚基准电压后U1脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842脚电位相应变低,从而改变U1脚输出占空比减小,U0降低。当输出U0降低时,U1脚电压降低,当其低过U1脚基准电压后U1脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842脚电位升高,从而改变U1脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。由于版面有限,还有
31、很多没上传,有空会上传上去。如果你急需要看全文的话,可以留个邮箱。六、短路保护电路:1、在输出端短路的情况下,PWM控制电路能够把输出电流限制在一个安全范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。2、短路保护电路通常有两种,下图是小功率短路保护电路,其原理简述如下:当输出电路短路,输出电压消失,光耦OT1不导通,UC3842脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842脚VCC电位被拉低,IC停止工作。UC3842停止工作后脚电位消失,TL431不导通UC3842脚电位上升,UC3842重新启动,周而复始。当短路
32、现象消失后,电路可以自动恢复成正常工作状态。3、下图是中功率短路保护电路,其原理简述如下: 当输出短路,UC3842脚电压上升,U1 脚电位高于脚时,比较器翻转脚输出高电位,给C1充电,当C1两端电压超过脚基准电压时U1脚输出低电位,UC3842脚低于1V,UCC3842停止工作,输出电压为0V,周而复始,当短路消失后电路正常工作。R2、C1是充放电时间常数,阻值不对时短路保护不起作用。4、 下图是常见的限流、短路保护电路。其工作原理简述如下: 当输出电路短路或过流,变压器原边电流增大,R3两端电压降增大,脚电压升高,UC3842脚输出占空比逐渐增大,脚电压超过1V时,UC3842关闭无输出。
33、5、下图是用电流互感器取样电流的保护电路, 有着功耗小,但成本高和电路较为复杂,其工作原理简述如下:输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842脚超过1伏,UC3842停止工作,周而复始,当短路或过载消失,电路自行恢复。七、输出端限流保护: 上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS(锰铜丝)两端电压上升,U1脚电压高于脚基准电压,U1脚输出高电压,Q1导通,光耦发生光电效应,UC3842脚电压降低,输出电压降低,从而达到输出过载限流的目的。八、输出过压保护电路的原理:输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在
34、一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应用最为普遍的过压保护电路有如下几种:1、可控硅触发保护电路: 如上图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。2、光电耦合保护电路: 如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使
35、光电耦合器的光敏三极管导通。Q1基极得电导通,3842的脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始,。3、输出限压保护电路:输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842电压升高,输出降低,稳压管不导通,UC3842电压降低,输出电压升高。周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。4、输出过压锁死电路: 图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc电压经R1、Q1、R2使Q2始终导通,UC3842脚始终是高电平而停止工作。在图B中
36、,UO升高U1脚电压升高,脚输出高电平,由于D1、R1的存在,U1脚始终输出高电平Q1始终导通,UC3842脚始终是低电平而停止工作。九、功率因数校正电路(PFC):1、原理示意图: 2、工作原理:输入电压经L1、L2、L3等组成的EMI滤波器,BRG1整流一路送PFC电感,另一路经R1、R2分压后送入PFC控制器作为输入电压的取样,用以调整控制信号的占空比,即改变Q1的导通和关断时间,稳定PFC输出电压。L4是PFC电感,它在Q1导通时储存能量,在Q1关断时施放能量。D1是启动二极管。D2是PFC整流二极管,C6、C7滤波。PFC电压一路送后级电路,另一路经R3、R4分压后送入PFC控制器作
37、为PFC输出电压的取样,用以调整控制信号的占空比,稳定PFC输出电压。十、输入过欠压保护:1、 原理图: 2、 工作原理:AC输入和DC输入的开关电源的输入过欠压保护原理大致相同。保护电路的取样电压均来自输入滤波后的电压。取样电压分为两路,一路经R1、R2、R3、R4分压后输入比较器3脚,如取样电压高于2脚基准电压,比较器1脚输出高电平去控制主控制器使其关断,电源无输出。另一路经R7、R8、R9、R10分压后输入比较器6脚,如取样电压低于5脚基准电压,比较器7脚输出高电平去控制主控制器使其关断,电源无输出。十一、电池管理:1、 电池管理原理图: 虚线框A内的零件组成电池启动和关断电路;虚线框B
38、为电池充电线性稳压电路;虚线框C为电子开关电路;虚线框D为电池充电电流限制电路。2、 电池启动原理:输入电压由INPUT和AGND端输入,分为三路。第一路经D7直接送后级和电池启动、关断电路。R28、R27、R26分压后的电压使U3导通(此电压在设计时已计算好了,正常工作时高于2.5V),光藕OT1导通。R25为U3提供工作电压,R23、R24为光藕的限流及保护电阻。光藕导通后电源经R22、OT1、D9给Q4提供基极偏置电压,Q4导通,R21为Q4的下偏置电阻。继电器RLY1-A的线圈中有电流流过,继电器触点RLY1-B吸合,将电池BAT接入电路中。D4为阻止在Q4关断时继电器线圈产生的电动势
39、影响后级电路,D5为防止在Q4关断时继电器线圈产生的电动势损坏Q4,将继电器线圈产生的能量释放。3、 电池充电稳压原理:在通电的初期,由于Q3没有偏置而不导通,D3的正端无电压。电源经R1降压Z1稳压后给U1和U2提供工作电压。R2、U1组成基准电压,R13、R4、R5、R6、VR1组成电池电压检测电路,当U2脚检测电压低于脚电压时,其脚输出高电平,经R14给Q2提供偏置电压,Q2导通、Q3也跟着导通,电源经Q3、D3、继电器触点RLY1-B、F1给电池BAT充电。当U2脚检测电压高于脚电压时,其脚输出低电平,Q2失去偏置电压而截止,Q3截止,D3的正端无电压,其负极电压下降,U2脚检测电压也
40、跟着下降,当U2脚检测电压低于脚电压时,其脚输出高电平,Q2、Q3导通继续充电,如此周而复始,使D3的负端电压维持在某一设定值。调节VR1可以改变充电电压值。4、 电池充电限流原理:在充电的过程中,电流经Q3、RLY1-B、F1、BAT、R20回到地(AGND)。在电池充电的初期,因电池电压比较低,流经Q3、RLY1-B、F1、BAT、R20的电流就会增大,那么在R20上产生的压降就会增大(R20为电流取样电阻)。电阻R20的上端S点经R11连接到U2B的同相输入端脚,U2B的反相输入端脚有一固定参考电压,当R20上的压降超过参考电压时,U2脚输出高电平,经D2、R15给Q1提供偏置电压,Q1
41、因此导通。Q1导通后Q2因失去基极电压而截止,将使线性稳压器的输出关断,Q3、RLY1-B、F1、BAT、R20回路中就没有电流流过,R20上的压降消失,U2脚输出低电平,Q1截止,Q2、Q3导通继续充电,如此周而复始,就将充电电流限制在某一设定值范围内。调节R10、R11可改变限流点。5、 电池欠压关断原理:当输入电压没有时,电池电压经D6给后级和电池启动、关断电路供电。当电池电压下降,U3脚电压也跟着下降,在电池电压下降至设计关断点时(也就是U3脚电压低于2.5V时),U3不导通,OT1不发生光电藕合,Q4无偏置而截止,继电器RLY1-A的线圈中没有电流流过,继电器触点RLY1-B断开,将
42、电池BAT从电路中断开,防止电池过放电而损坏。改变R26、R27的阻值,可以改变电池欠压关断时的电压值。十二、智能风扇散热:1、 在开关电源中,对电源进行散热的方式有很多种,智能散热就是其中之一。它是随电源工作时的温度高低,来调节散热风扇的工作电压而改变风力大小,达到最佳散热效果。有着节能的目的。其原理图如下:2、 工作原理:输入电压由INPUT端(1213V)输入,R6为U2提供工作电压,R7、R8阻值相同,分压后为TL431提供触发电压,使A点的基准电压在+5V;RT1为负温度系数热敏电阻,经R1、R2分压加在U1的反相输入端脚。R5为输出电压取样电阻,与R4分压后加在U1的同相输入端脚;
43、Q1为电子开关管;风扇电压由FANOUT端输出。在刚通电的时候,由于Q1还没导通,C点无电压,U1的脚电压高于脚,因此U1脚输出低电平,Z1击穿导通,Q1导通,C点有电压输出;应Q1的发射极接输入电压端,因此C点电压约等于输入电压,经R5与R4分压后加在U1的同相输入端脚,使脚电压高于脚电压,U1脚输出高电平,Z1不导通,Q1不导通,C点无电压输出;使脚电压又低于脚电压,U1脚又输出低电平,如此反复最终使C电压稳定在某一值(因脚电压不变);也就是说C点的电压是随B点的电压变化而变化的。开关电源工作的初期(或轻载工作),机内温度低,热敏电阻RT1的内阻很大,B点的电压相对较低,因此C点的输出电压
44、也低,风扇因工作电压低而转速慢、风力小。当开关电源机内温度逐渐升高(满载工作),热敏电阻RT1的内阻逐渐减小,B点的电压也升高,因此C点的输出电压也跟着升高,风扇因工作电压升高而转速加快、风力加大。当机内温度下降后,热敏电阻内阻逐渐增大,B点电压下降,C点的输出电压也降低,风扇因工作电压低而转速变慢、风力小。当B点电压(温度)升高到一定程度时,U1脚电压高于脚基准电压,U1脚输出高电平,一路经D1、R13返回到B点,使U1脚始终输出高电平(也就是自锁);另一路经D2输出到过温保护电路,实现过温保护功能。十三、均流技术:1、 在通讯设备或其它用电设备中,为了使系统不间断的工作,对供电系统的要求就
45、很高。除了要求电源本身的性能要稳定外,另一种方法就是采用1+1备分的方式,就是一台设备用两台电源并联供电,当其中的一台损坏,另外一台可继续给系统供电。在正常工作时,每台电源提供的能量相等,也就是它们输出的电压、电流基本一致。为了使每台电源输出的电压、电流基本一致,就要用到均流技术。原理如下图所示:2、 工作原理:U1A、R1R7、C1C5、VR1组成电流取样电压放大器;U1B、D1组成电压跟随器;R10为均流电压输出电阻;R11R14、U2A、C6C10组成平衡电压比较器;R15R17、Q1为电子开关;R30R33、C17、C18、U2B组成过流保护电路;R1928、D2、D3、D4、C12C
46、14、Q2是电源的输出电压稳压环路,其中D2、D3、R19R21为输出电压取样电路。D6为输出隔离二极管。电源在工作时,由电流环或锰铜丝检测的电流取样电压由+IS、-IS加入U1A组成的电压放大器进行放大,经R5、R6、R7、VR1分压后分两路输出,一路送入U1B电压跟随器,D1起隔离作用,防止均流母线上的电压变化对前级电路产生影响,另一路送过流保护电路。经过电压跟随器后的电流取样电压又分为两路,一路经R10输出作为均流信号电压JL+,另一路经R11送入U2A组成的平衡电压比较器与U2脚的参考电压进行比较,当U2脚电压高于脚电压,其输出高电平,Q1基极得电导通,将R17、R18并入输出电压取样电路,使输出电压升高,输出电压升高后输出电流就会减小,检测的电流取样电压也就降低,均流信号电压JL+降低,U2脚电压低于脚电压,其当两台电源并机工作时,其输出端是并接在一起的,均流信号线也连接在一起。现在假设电源A的输出电流Io1大于电源B的输出电流Io2,在两台电源内部的电流取样电压就会A高于B,也就是JL1+高于JL2+,而JL1+和JL2+是接在同一条线上(均流母线),因