简单的线性规划问题(第1课时).ppt

上传人:wuy****n92 文档编号:91063277 上传时间:2023-05-21 格式:PPT 页数:11 大小:360KB
返回 下载 相关 举报
简单的线性规划问题(第1课时).ppt_第1页
第1页 / 共11页
简单的线性规划问题(第1课时).ppt_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《简单的线性规划问题(第1课时).ppt》由会员分享,可在线阅读,更多相关《简单的线性规划问题(第1课时).ppt(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、xyo简单的线性规划问题(简单的线性规划问题(1)一、实际问题一、实际问题 某工厂用某工厂用A、B两种配件生产甲、乙两种产品,两种配件生产甲、乙两种产品,每生产一件甲产品使用每生产一件甲产品使用4个个A配件耗时配件耗时1h,每生产一每生产一件乙产品使用件乙产品使用4个个B配件耗时配件耗时2h,该厂每天最多可从该厂每天最多可从配件厂获得配件厂获得16个个A配件和配件和12个个B配件,按每天工作配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?计算,该厂所有可能的日生产安排是什么?按甲、乙两种产品分别生产按甲、乙两种产品分别生产x、y件,由件,由已知条件可得二元一次不等式组已知条件可得二元

2、一次不等式组 将上述不等式组表示成平面上的区域,图中的阴影部将上述不等式组表示成平面上的区域,图中的阴影部分中的整点(坐标为整数)就代表所有可能的日生产安排。分中的整点(坐标为整数)就代表所有可能的日生产安排。yx4843o 若生产一件甲产品获利若生产一件甲产品获利2万元,生产一件乙产品获万元,生产一件乙产品获利利3万元,采用那种生产安排利润最大?万元,采用那种生产安排利润最大?设工厂获得的利润为设工厂获得的利润为z,则则z2x3y把把z2x3y变形为变形为 它表示斜率为它表示斜率为 的直的直线系,线系,z与这条直线的与这条直线的截距有关。截距有关。如图可见,当直线如图可见,当直线经过可行域上

3、的点经过可行域上的点M时,截距时,截距最大,即最大,即z最大。最大。M 二、基本概念二、基本概念yx4843o 把求最大值或求最小值的的函数称为目标函数,因把求最大值或求最小值的的函数称为目标函数,因为它是关于变量为它是关于变量x、y的一次解析式,又称线性目标函数。的一次解析式,又称线性目标函数。满足线性约束的解满足线性约束的解(x x,y y)叫做可行解。叫做可行解。在线性约束条件下求线性目标函数的最大值或最小值在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题。问题,统称为线性规划问题。一组关于变量一组关于变量x、y的一次不等式,称为线性约束条的一次不等式,称为线性约束

4、条件。件。由所有可行解组成由所有可行解组成的集合叫做可行域。的集合叫做可行域。使目标函数取得最大值或最小值的可行解叫做使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。这个问题的最优解。可行域可行域可行解可行解最优解最优解例例1、营养学家指出,成人良好的日常饮食应该至少提、营养学家指出,成人良好的日常饮食应该至少提供供0.075kg的碳水化合物,的碳水化合物,0.06kg的蛋白质,的蛋白质,0.06kg的脂肪,的脂肪,1kg食物食物A含有含有0.105kg碳水化合碳水化合物,物,0.07kg蛋白质,蛋白质,0.14kg脂肪,花费脂肪,花费28元;而元;而1食物食物B含有含有0.105k

5、g碳水化合物,碳水化合物,0.14kg蛋白质,蛋白质,0.07kg脂肪,花费脂肪,花费21元。为了满足营养专家指出的元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物日常饮食要求,同时使花费最低,需要同时食用食物A和食物和食物B多少多少kg?食物kg碳水化合物kg蛋白质/kg脂肪kgA0.1050.070.14B0.1050.140.07分析:将已知数据列成表格分析:将已知数据列成表格三、例题三、例题解:设每天食用解:设每天食用xkg食物食物A,ykg食物食物B,总成本为总成本为z,那么那么目标函数为:目标函数为:z28x21y作出二元一次不等式组所表示的平面区域,即可行

6、域作出二元一次不等式组所表示的平面区域,即可行域把目标函数把目标函数z28x21y 变形为变形为xyo5/75/76/73/73/76/7 它表示斜率为它表示斜率为随随z变化的一组平行直变化的一组平行直线系线系 是直线在是直线在y轴上轴上的截距,当截距最的截距,当截距最小时,小时,z的值最小。的值最小。M 如图可见,当直线如图可见,当直线z28x21y 经过可经过可行域上的点行域上的点M时,截距时,截距最小,即最小,即z最小。最小。M点是两条直线的交点,解方程组点是两条直线的交点,解方程组得得M点的坐标为:点的坐标为:所以所以zmin28x21y16 由此可知,每天食用食物由此可知,每天食用食

7、物A143g,食物食物B约约571g,能够满足日常饮食要求,又使花费最低,能够满足日常饮食要求,又使花费最低,最低成本为最低成本为16元。元。四、练习题四、练习题:1、求求z2xy的最大值,使的最大值,使x、y满足约束条件满足约束条件:2、求求z3x5y的最大值,使的最大值,使x、y满足约束条件:满足约束条件:解:作出平面区域解:作出平面区域xyABCxyooABC 作出直线作出直线y=2xz的的图像,可知图像,可知z要求最大值,要求最大值,即直线经过即直线经过C点时。点时。求得求得C点坐标为(点坐标为(2,1),),则则Zmax=2xy3 作出直线作出直线3x5y z 的的图像,可知直线经过图像,可知直线经过A点时,点时,Z取最大值;直线经过取最大值;直线经过B点点时,时,Z取最小值。取最小值。求得求得A(1.5,2.5),),B(2,1),),则则Zmax=17,Zmin=11。五、作业:五、作业:习题习题3.3A组组 3、4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁