《四川省广元市2022年中考数学试卷.pdf》由会员分享,可在线阅读,更多相关《四川省广元市2022年中考数学试卷.pdf(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、四川省广元市2022年中考数学试卷姓名:班级:考号:题号总分评分阅卷人-、单选题(共10题;共2 0分)得分1.(2 分)若实数a 的相反数是-3,则 a 等 于()A.-3 B.0 C.1 D.32.(2 分)如图是某几何体的展开图,该几何体是()A.长方体 B.圆柱 C.圆锥 D.三棱柱3.(2 分)下列运算正确的是()A.x 2+x=x 3 B.(-3 x)2=6 x 2C.3 y 2 x*2y 3 4 5=6 x2y2 D.(x -2 y)(x+2 y)=x2-2 y24.(2 分)如图,直线a|b,将三角尺直角顶点放在直线b 上,若N1=5 O。,则N 2的度A.2 0 B.3 0。
2、C.4 0 D.5 0 5.(2 分)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95 口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1 6 0 0 元,N95 口罩花费96 0 0 元.已知一次性医用外科口罩的单价比N95 口罩的单价少1 0 元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是()A 9600_1600 R 9600 _ 1600X10T xTT0lTC 9 6 0 0 1600 D 9600 1600川0*x%10 x x6.(2分)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成
3、A.平均数是6 B.众数是7 C.中位数是11 D.方差是87.(2分)如图,A B是。O的直径,C、D是。O上的两点,若NCAB=65。,则NADC的度数为()A.25 B.35 C.45 D.658.(2分)如图,在 ABC中,BC=6,AC=8,Z C=9 0 ,以点B为圆心,BC长为半径画弧,与A B交于点D,再分别以A、D为圆心,大于*A D的长为半径画弧,两弧交于点M、N,作直线M N,分别交AC、A B于点E、F,则A E的长度为()9.(2分)如图,在正方形方格纸中,每个小正方形的边长都相等,A,B,C,D都在格2/32.O.郑.O.II-.O.恶.O.直.O:出.O.郑.O.
4、区.O.摒.O.氐.O.O.熬.O.郑.点处,A B与CD 相交于点P,则c o s NAP C 的值为(西5A.B而522-5)在5D.oOn|p曲教oO1 0.(2 分)二次函数 y=a x 2+b x+c (a/)的部分图象如图所示,图象过点(-1,0),对称轴为直线 x=2,下列结论:(1)a b c 2 b;(3)3 b -200;(4)若点 A(-2,y i)、点 B (-1,y 2)、点 C (Z,y3)在该函数图象上,则 y i V y 3 y 2;(5)4 a+2 b m (a m+b)(m为常数).其中正确的结论有()阅卷入得分阅卷入二、填空题(共 6 题;共 6 分)得分
5、1 1.(1 分)分解因式:a3-4a=.1 2.(1 分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.0 0 0 0 0 0 0 0 0 3 4米,这 个 数 用 科 学 记 数 法 表 示 为.1 3.(1 分)一个袋中装有m个红球,1 0 个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与 n的关系是.1 4.(1 分)如图,将。O 沿弦A B折叠,扇恰经过圆心0,若 A B=2 百,则阴影部分的面积为.O15.(1 分)如图,已知在平面直角坐标系中,点A 在 x 轴负半轴上,点 B 在第二象限内,反比例函数y=的图象经过4
6、 0 A B 的顶点B 和边AB的中点C,如果 OAB的面积为6,那么k 的值是.16.(1 分)如图,直尺AB垂直竖立在水平面上,将一个含45。角的直角三角板CDE的斜边DE靠在直尺的一边AB上,使点E 与点A 重合,DE=12cm.当点D 沿 DA方向滑动时,点E 同时从点A 出发沿射线AF方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 cm.阅卷人三、解答题(共10题;共 91分)得分17.(5 分)计算:2sin60-|V3-2|+(%-V10)-V12+(-J)-2.18.(5 分)先化简,再求值:於(1-卦,其中x 是不等式组代 二 凌 装 1的4/3 2.O.郑.O.II
7、-.O.O.M.O:出.O.郑.O.区.O.摒.O.氐.O.O.筑.O.I I-.O.堞.O.氐.O.:O.辑.O.K.O.堞.O.田.O.整数解.19.(10 分)如图,在四边形 ABCD 中,ABHCD,AC 平分/DAB,AB=2CD,E 为 AB中点,连接CE.一DI*P:S一8教一穿科(1)(5分)求证:四边形AECD为菱形;(2)(5 分)若ND=120。,DC=2,求 ABC 的面积.20.(15分)为丰富学生课余活动,明德中学组建了 A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参
8、团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:人数(1)(5分)八年级(1)班学生总人数是 ,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为 :(2)(5分)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)(5分)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.21.(5分)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45。,在距E点80m的C处测得山
9、顶A的仰角为30。,从与F点相距10m的D处测得山顶A的仰角为45。,点C、E、F、D在同一直线上,求隧道E F的长度.22.(10分)如图,在平面直角坐标系xO y中,函数y=x+b的图象与函数y=(x0)的图象相交于点B(1,6),并与x轴交于点A.点C是线段A B上一点,aO A C与(2)(5分)若将aO A C绕点0顺时针旋转,使点C的对应点C落在x轴正半轴上,得到OA,C,判断点A,是否在函数y=(x 0)的图象上,并说明理由.23.(10分)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282
10、元.(1)(5分)科技类图书与文学类图书的单价分别为多少元?(2)(5分)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?24.(10分)在RS ABC中,Z A C B=9 0,以A C为直径的。O交A B于点D,点E是边B C的中点,连结DE.6/32.O.郑.O.II-.O.恶.O.直.O:出.O.郑.O.区.O.摒.O
11、.氐.O.oo然oo(1)(5分)求证:D E是。的切线;(2)(5 分)若 AD=4,B D=9,求。O 的半径.25.(6分)在Rta ABC中,A C=B C,将线段C A绕点C旋转a(0。(1 0)经过A,B两点,并与x轴的正半轴交于点C.女o(1)(5分)求a,b满足的关系式及c的值;oo(2)(5分)当2=/时,若点P是抛物线对称轴上的一个动点,求APAB周长的最小值;(3)(5分)当2=1时-,若点Q是直线A B下方抛物线上的一个动点,过点Q作QDJ_AB于点D,当Q D的值最大时,求此时点Q的坐标及Q D的最大值.8/32.O.郑.O.II-.O.恶.O.直.O:出.O.郑.O
12、.区.O.摒.O.氐.O.O.筑.O.I I-.O.堞.O.氐.O.:O.辑.O.K.O.堞.O.田.O.答案解析部分1.【答案】D【解析】【解答】解:3的相反数是-3,a=3.故答案为:D.【分析】根据只有符号不同的两个数互为相反数进行解答.2.【答案】B【解析】【解答】解:由图形可得该几何体是圆柱;故答案为:B.一DI*P:S一8教一穿科【分析】利用圆柱的展开图判断即可。3.【答案】C【解析】【解答】解:A、X?与x不是同类项,不能合并,该选项不符合题意;B、(-3x)2=9x2,原计算错误,该选项不符合题意;C、3y2x2y=6x2y2,原式计算正确,该选项符合题意;D、(x-2y)(x
13、+2y)=x2-4y2,原计算错误,该选项不符合题意.故答案为:C.【分析】整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序及系数没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数都不变,但不是同类项的不能合并,据此可判断A;积的乘方,先对每一个因式进行乘方,然后将所得的幕相乘,据此判断B;根据单项式乘以单项式,把系数与相同的字母的箱分别相乘,对于只在某一个单项式中含有的字母,则连同指数作为积的一个因式,据此可判断C;根据平方差公式的展开式等于完全相同的项的平方减去互为相反数数的项的平方,据此可判断D.4.【答案】C【
14、解析】【解答】解:如图,由题意得:Z 3=1 8 0o-9 0-Z l=4 0,:a b,.-.Z 2=Z 3=4 0.故答案为:C.【分析】对图形进行角标注,根据平角的概念可得N3的度数,由二直线平行,同位角相等可得N 2=N 3,据此解答.5.【答案】B【解析】【解答】解:设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 9 5 口罩的单价是(x+1 0)元,依题意得:1 6 0 0 _ 9 6 0 0-x x+1 0 故答案为:B.【分析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 9 5 口罩的单价是(x+1 0)元,利用1 6 0 0 元可购买一次性医用外科口罩
15、的数量为幽,利用9 6 0 0 元可以X购买N 9 5 口罩的数量为 濯,然后根据数量相同就可列出方程.6.【答案】D【解析】【解答】解:A、平均数为(5 +7 +1 1 +3 +9)+5 =7,故此选项错误,不符合题意;B、众数为5、7、1 1、3、9,故此选项错误,不符合题意;C、从小到大排列为3,5,7,9,1 1,中位数是7,故此选项错误,不符合题意;D、方差s 2 =1 (5-7)2+(7 -7)2 +(1 1 -7)2+(3-7)2 4-(9-7)2 =8,故此选项正确,符合题意.故答案为:D.【分析 1 根据折线统计图可得6月 1 日至5日每天的用水量,相加求出总用水量,然后除以
16、5 可得平均数,据此判断A;找出出现次数最多的数据即为众数,据此判断B;将 6月 1日至5日每天的用水量从小到大进行排列,找出最中间的数据即为中位数,据此判断C;用各个数据与平均数差的平方和的平均数求出方差,据此判断D.7.【答案】A【解析】【解答】解:AB是直径,/.Z A C B=9 0,10/32.O.郑.O.II-.O.O.M.O:出.O.郑.O.区.O.摒.O.氐.O.XVZCAB=65,ZABC=90-ZCAB=25,NADC=NABC=25。.故答案为:A.【分析】根据圆周角定理可得NADONABC,NACB=90。,根据余角的性质可得ZABC=90-ZCAB=25,据此解答.8
17、.【答案】A【解析】【解答】解:由题意得:MN垂直平分AD,BD=BC=6,1 河=y 0,/,AFE=90,VBC=6,AC=8,ZC=90,0 IP*-AB=yjAC2+BC2=10,.AD=4,AF=2,cos=3故答案为:A.【分析】由题意得:MN垂直平分AD,BD=BC=6,AF=|AD,ZAFE=90,利用勾股定理可得A B,然后根据三角函数的概念进行计算.9.【答案】B【解析】【解答】解:把 AB向上平移一个单位到D E,连接C E,如图.则 DEAB,.*.ZAPC=ZEDC.在 DCE 中,有EC=V22+I2=遮,DC=V22+42=2遥,DE=序 +在=5,AFC2+叱=
18、5+20=25=DE2,.DCE是直角三角形,月/DCE=90,/.cos Z APC=cos Z EDC=DE 5故答案为:B.【分析】把 AB向上平移一个单位到D E,连接C E,则DEA B,根据平行线的性质可得/A P C=/E D C.,利用勾股定理可得EC、DC、D E,结合勾股定理逆定理知 DCE是直角三角形,且/DCE=90。,然后结合三角函数的概念进行计算.10.【答案】C【解析】【解答】解:由图象及题意得:a 0,对称轴为直线x=2,与 x 轴的一个交点为(-1,0),b 4a 0,a b+c=0,.a+4a+c=0,即c=-5a,.*.abc 0,故(1)(3)正确;由图
19、象可知当*=-2时-,则有4 a-2 b +c 0,即4a+c y2 yv 故(4)错误;由图象可知当x=2时,该函数有最大值,最大值为y=4a+2b+c,.当 x=m 时;(m 为常数),则有y=am?+bm+c,.,.4a+2b+c am2+bm+c,即为4a+2bAm(am+b),故(5)正确;综上所述:正确的有(1)(3)(5)共 3 个;故答案为:C.【分析】由图象及题意得a 0,对称轴为直线x=2,与 x 轴的一个交点为(-L0)则 b=-4a0,a-b+c=0,推出c=-5a,据此判断(1)(3);由图象可知当x=-2时,则4a-2b+c0,据此判断(2);根据二次函数的性质可得
20、离对称轴的距离越近,其所对应的函数值越大,据此判断(4);由图象可知当x=2时,该函数有最大值,最大值为y=4a+2b+c,据此判断(5).11.【答案】a(a+2)(a-2)【解析】【解答】解:原式=a(a2-4)=a(a+2)(a-2).故答案为:a(a+2)(a-2)12/32.o.郑.o.Il-.o.o.M.o:出.o.郑.o.区.o.摒.o.氐.o.o然On|p曲O【分析】原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】3.4x10 10【解析】【解答】解:0.00000000034=3.4x10 10
21、,故答案为:3.4x109【分析】绝对值小于1 的正数也可以利用科学记数法表示,一般形式为a x lO?与较大数的科学记数法不同的是其所使用的是负指数累,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.13.【答案】m+n=10【解析】【解答】解:一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,.,.m 与n 的关系是:m+n=10。故答案为:m+n=10。【分析】根据概率的计算方法,用袋中黄球的个数比上袋中小球的总个数即可算出从袋中摸出一个小球是黄球的概率,用袋中不是黄球的小球个数比上袋中小球的总个数即可算出从袋中摸出一个小球不是黄球的概率,由摸
22、到黄球的概率与不是黄球的概率相同即可得出结论。14.【答案】|兀【解析】【解答】解:过点O 作 ODLAB于点D,交劣弧AB于点E,如图所示:O女由题意可得:OD=DE=*OB,AD=BD=AB=.AC,平分/NAM,即点D 沿 DA方向下滑时,点 C 在射线AC上运动,当COIAB时,此时四边形CD,AE是正方形,CC的值最大,最大值为4D-4C =(12-6 g c m,当点D 滑动到点A 时-,点C 运动的路径长为2 X(12-6/)=(24-12V2)cm;oo故答案为:(24-12V2).【分析】由题意得/DEC=45。,DE=12cm,贝 lj CD=CE=6Vcm,当点D 沿 D
23、A方向下滑时,得到/日,过点C 作 CNLAB于点N,作 CM LAF于点M,则四边形NAMC是矩形,根据同角的余角相等可得/D C N=/E,C M,证明 D CN/ZN E,CM,得到C%nceN=CM,推出AC平分/N A M,即点D 沿 DA方向下滑时,点 C 在射线AC上运动,当C D L A B 时,此时四边形CTTAE,是正方形,CC的值最大,最大值为AD-A C,据此求解.17.【答案】解:2sin60-IV3-2|+(无-V10)-V12+(-)2=2x 孚-2+6+1-2V3+4=V3-2+V3+l-2V3+4=3.【解析】【分析】根据0 次基、负整数指数累的运算性质、绝对
24、值的性质、二次根式的性质及特殊角的三角函数值分别化简,然后计算乘法,再合并同类二次根式及进行有理数的加减法即可.18【答案】解:原 式=悬 石+(3二2*)=悬 不 义+笠 岩;D 二刍xx-ri)XLL xx-ri)XX1)XL由 可 得 该 不 等 式 组 的 解 集 为:一 1 W%tanz.COF=历=4,由旋转的性质可得:OC=OC=0 7,Z-OC1=Z.AOC,根据等积法可得:人 2 =学=等 算,oc x/.c二 AE _ 5/17 UD=-7 =T T y-,tanzL4 0E 17/,5/17 20/17.4(十,.5 7 1 7 20V17 100,.点A,不在反比例函数
25、图象上.【解析】【分析】(1)将 B(1,6)分别代入丫=*+6 y考中可得b、k 的值;(2)过点A,作 A,E,x 轴于点E,过点C 作 CF_Lx轴于点F,易得A(-5,0),结合三角形的面积公式可得点C(-1,4),则CF=4,O F=1,利用勾股定理求出O C,根据三角函数的概念可得tan/C O F的值,由旋转的性质可得OC=OC,NA,O C=/A O C,根据等积法可得A,E,由三角函数的概念可得O E,据此可得点A,的坐标,然后求出点A,的横、纵坐标的乘积,据此判断.20/32.O.郑.O.II-.O.O.M.O:出.O.郑.O.区.O.摒.O.氐.O.O.筑.O.I I-.
26、O.堞.O.氐.O.一DI*P:S一8教一穿科:O.辑.O.K.O.堞.O.田.O.23.【答案】(1)解:设科技类图书的单价为x元,文学类图书的单价为y元,由题意得:Ur+5y=282解何:iy=26;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w元购书款,购买科技类图书m本,则文学类图书有(100-m)本,由(1)可得:当 30Wm0,.当 m=30 时,w 有最小值,即为w=360+2600=2960;当40 m 50时,则有:w=(38 m+40)m+26(100 m)=m2+52m+2600,V-l0,当 m=51 时,w 有最小值,即为w=102
27、+2600=2702;综上所述:社区至少要准备2700元的购书款.【解析】【分析】(1)设科技类图书的单价为x元,文学类图书的单价为y元,根据购买2本科技类图书和3本文学类图书需154元可得2x+3y=154;根据购买4本科技类图书和5本文学类图书需282元可得4x+5y=282,联立求解即可;(2)设社区需要准备w元购书款,购买科技类图书m本,则文学类图书有(100-m)本,分30Wm40、40m50,50m 0)经过 A,B 两点,.(4a-2b+c=0 4 c=22a=b+1,c=-2;(2)解:当 a=/时,贝 ij b=-J,抛物线的解析式为y=1x2-lX-2,抛物线的对称轴为直线
28、x=l,.点A 的坐标为(-2,0),二点C 的坐标为(4,0),PAB的周长为:PB+PA+AB,且 AB是定值,/.当PB+PA最小时,PAB的周长最小,:点 A、C 关于直线x=l对称,连接BC交直线x=l于点P,此时PB+PA值最小,VAP=CP,/.PAB 的周长最小值为:PB+PA+AB=BC+AB,VA(-2,0),B(0,-2),C(4,0),.OA=2,OB=2,OC=4,由勾股定理得BC=2遮,AB=2V2,/.PAB的周长最小值是:2遮+2/.(3)解:当 a=l 时,b=l,二抛物线的解析式为y=x2+x-2,过点Q 作 Q FLx轴交于F 点,交直线AB于点E,.*.
29、OA=OB,.,.ZOAB=45,VQD1AB,26/32.o.郑.o.Il-.o.o.M.o:出.o.郑.o.区.o.摒.o.氐.o.oo然On|p曲O.Z AEF=Z QED=Z EQD=45,;.QD=ED 咚 EQ,设 Q(t,t2+t-2),E(t,-t-2),.QE=-t-2-(t2+t-2)=-t2-2t,.DQ啰 QE=4(t2+2t)=孝(t+l)2+多当t=-l时,DQ有最大值孝,此时Q(-1,-2).【解析】【分析】(1)令 y=-x-2中的x=0、y=0,求出y、x 的值,可得点A、B 的坐标,然后代入y=ax2+bx+c中就可得到a,b 满足的关系式及c 的值;(2)
30、当a=时,则b=,则抛物线的解析式为y=#-吴2,对称轴为直线x=l,结合对称性可得C(4,0),PAB的周长为PB+PA+AB,且 AB是定值,故当PB+PA最小时,4PA B的周长最小,连接BC交直线x=l于点P,此时PB+PA值最小,PAB的周长的最小值为BC+AB,根据点A、B、C 的坐标可得OA、OB、0 C 的值,利用勾股定理求出BC、A B,据此解答;(3)当2=1时-,b=l,则抛物线的解析式为y=x2+x-2,过点Q 作 Q FLx轴交于F 点,交直线AB于点E,易得 OAB为等腰直角三角形,ZAEF=ZQED=ZEQD=45,QD=ED=EQ,设Q(t,t2+t-2),E(
31、t,-t-2),表示出D Q,然后结合二次函数的性质可得DQ的最大值以及对应的点Q 的坐标.o女OO试题分析部分1、试卷总体分布分析总分:117分分值分布客观题(占比)21.0(17.9%)主观题(占比)96.0(82.1%)题量分布客观题(占比)11(42.3%)主观题(占比)15(57.7%)2、试卷题量分布分析大题题型题目量(占比)分 值(占比)填空题6(23.1%)6.0(5.1%)解答题10(38.5%)91.0(77.8%)单选题10(38.5%)20.0(17.1%)3、试卷难度结构分析序号难易度占比1普通(73.1%)2容易(19.2%)3困难(7.7%)4、试卷知识点分析序号
32、知识点(认知水平)分 值(占比)对应题号1实数的运算5.0(4.3%)17o翔o区o堞o女oalp国教o郑o区o堞oo2角平分线的定义10.0(8.5%)193三角形的中位线定理10.0(8.5%)244轴对称的应用-最短距离问题15.0(12.8%)265二次函数图象与系数的关系2.0(1.7%)106菱形的判定与性质10.0(8.5%)197列表法与树状图法15.0(12.8%)208相反数及有理数的相反数2.0(17%)19单项式乘单项式2.0(17%)310二次函数与一次函数的综合应用10.0(8.5%)2311科学记数法一表示绝对值较大的数1.0(0.9%)1212等腰直角三角形7.
33、0(6.0%)16,2513二次函数y=axA2+bx+c的性质2.0(17%)1014圆的综合题6.0(5.1%)2515翻折变换(折叠问题)1.0(0.9%)1416中位数2.0(17%)617等边三角形的判定与性质10.0(8.5%)1918同类项2.0(17%)319一次函数图象与坐标轴交点问题15.0(12.8%)26o.郑.o.K.o.摒.o.氐.o.出:o.郑.o.fa-.o.揩.o.M.o:30/3220积的乘方2.0(17%)321反比例函数与一次函数的交点问题10.0(8.5%)2222平行线的性质14.0(12.0%)4,9,1923旋转的性质16.0(13.7%)22,
34、2524三角形全等的判定(AAS)1.0(0.9%)1625切线的判定10.0(8.5%)2426众数2.0(17%)627提公因式法与公式法的综合运用1.0(0.9%)1128三角形的面积22.0(18.8%)14,15,19,2229扇形面积的计算1.0(0.9%)1430角平分线的判定1.0(0.9%)1631平方差公式及应用2.0(1.7%)332二次函数图象上点的坐标特征2.0(17%)1033解一元一次不等式组5.0(4.3%)1834用样本估计总体15.0(12.8%)2035二元一次方程组的应用-和差倍分问题10.0(8.5%)2336坐标与图形性质1.0(0.9%)1537线
35、段的中点1.0(0.9%)1538一元一次不等式组的特殊解5.0(4.3%)1839二次函数的最值15.0(12.8%)2640余角、补角及其性质2.0(17%)741条形统计图15.0(12.8%)2042待定系数法求二次函数解析式15.0(12.8%)2643矩形的判定与性质1.0(0.9%)1644垂径定理1.0(0.9%)1445方差2.0(17%)646特殊角的三角函数值5.0(4.3%)1747圆周角定理12.0(10.3%)7,2448相似三角形的判定与性质10.0(8.5%)2449圆柱的展开图2.0(17%)250线段垂直平分线的性质8.0(6.8%)8,2551分式方程的实
36、际应用2.0(17%)552勾股定理19.0(16.2%)8,9,2653反比例函数图象上点的坐标特征1.0(0.9%)1554利用分式运算化简求值5.0(4.3%)1855概率的简单应用1.0(0.9%)13o.郑.o.K.o.摒.o.氐.o.出:o.郑.o.fa-.o.揩.o.M.o:32/3256扇形统计图15.0(12.8%)2057三角形全等的判定(SAS)16.0(13.7%)24,2558正方形的判定与性质1.0(0.9%)1659折线统计图2.0(1.7%)660锐角三角函数的定义15.0(12.8%)8,9,14,2261勾股定理的逆定理2.0(17%)962解直角三角形的应用仰角俯角问题5.0(4.3%)21