《人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结.pdf》由会员分享,可在线阅读,更多相关《人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学选修高中数学选修 2-12-1 知识点总结知识点总结第一章第一章 常用逻辑用语常用逻辑用语1、命题命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”:p称为命题的条件,q称为命题的结论.3、若原命题为“若p,则q”,则它的逆命题逆命题为“若q,则p”.4、若原命题为“若p,则q”,则它的否命题否命题为“若p,则q”.5、若原命题为“若p,则q”,则它的逆否命题逆否命题为“若q,则p”.6、四种命题的真假性:四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真真假假四种命题的真假性之间的关系:假假1两个命
2、题互为逆否命题,它们有相同的真假性;2两个命题为互逆命题或互否命题,它们的真假性没有关系人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第1页人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第1页7、p是q的充要条件充要条件:p qp是q的充分不必要条件充分不必要条件:p q,q pp是q的必要不充分条件必要不充分条件:p q,q pp是q的既不充分不必要条件既不充分不必要条件:p q,q p8 8、逻辑联结词:、逻辑联结词:(1)用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作pq全真则真,有假则假。全真则真,有假则假。(2)用联结词“
3、或”把命题p和命题q联结起来,得到一个新命题,记作pq全假则假,有真则真。全假则假,有真则真。(2)对一个命题p全盘否定,得到一个新命题,记作p真假性相反真假性相反9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词全称量词,用“”表示含有全称量词的命题称为全称命题全称命题全称命题“对中任意一个x,有px成立”,记作“x,px”短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示含有存在量词的命题称为特称命题特称命题“存在中的一个x,使px成立”,记作“x,px”10、全称命题p:x,px,它的否定p:x,px全称命题的否定是特称命题特称命题例:例:“a=1”是“x 0
4、,2xa1”的()xA充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第二章第二章 圆锥曲线与方程圆锥曲线与方程1、椭圆定义:平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹称为椭圆椭圆这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距2、椭圆的几何性质几何性质:焦点的位置焦点在x轴上焦点在y轴上图形人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第2页人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第2页标准方程范围顶点轴长焦点焦距对称性离心率x2y21a b 0a2b2a x a且b y by2x21a
5、 b 0a2b2b x b且a y a1a,0、2a,010,b、20,b10,a、20,a1b,0、2b,0短轴的长 2b长轴的长 2aF1c,0、F2c,0F10,c、F20,cF1F2 2cc2 a2b2关于x轴、y轴、原点对称cb2e 120 e 1aa3、平面内与两个定点F1,F2的距离之差的绝对值等于常数(小于F)的点的轨迹称为双曲线双曲线这1F2两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距4、双曲线的几何性质:几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程范围顶点轴长焦点焦距对称性离心率渐近线方程x2y21a 0,b 0a2b2x a或x a,yRy2x21a
6、 0,b 0a2b2y a或y a,xR1a,0、2a,0F1c,0、F2c,010,a、20,aF10,c、F20,c虚轴的长 2b实轴的长 2aF1F2 2cc2 a2b2关于x轴、y轴对称,关于原点中心对称cb2e 12e 1aay bxay axb5、实轴和虚轴等长的双曲线称为等轴双曲线6、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线抛物线定点F称为抛物线的焦点,定直线l称为抛物线的准线7、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径通径”,即 2p8、焦半径焦半径公式:人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-
7、第3页人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第3页p;2p若点x0,y0在抛物线y2 2pxp 0上,焦点为F,则F x0;2p若点x0,y0在抛物线x2 2pyp 0上,焦点为F,则F y0;2p若点x0,y0在抛物线x2 2pyp 0上,焦点为F,则F y02若点x0,y0在抛物线y2 2pxp 0上,焦点为F,则F x09、抛物线的几何性质几何性质:标准方程y2 2 pxy2 2 pxx2 2 pyx2 2 pyp 0p 0p 0p 0图形顶点0,0 x轴对称轴y轴p F0,2p F0,2焦点 pF,02pF,02准线方程x p2x p2y p2y p2离
8、心率e 1范围x 0 x 0y 0y 0解题注意点:解题注意点:1 1、“回归定义”、“回归定义”是一种重要的解题策略。如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。2 2、直线与圆锥曲线的位置关系、直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.
9、联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为 0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是 0、0、0.应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:联立直线与圆锥曲线方程,利用韦达定理等;人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第4页人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第4页点差法(主要适用中点问题,设而不求,注意需检验,化简依据:x1 x2y y2y y 2x0,1 2y0,21 k)22x2 x1(
10、2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)直线具有斜率k,两个交点坐标分别为A(x1,y1),B(x2,y2)2AB 1k2x1x2(1k2)(x x)4x1x212 11y1 y22k 直线斜率不存在,则AB y1 y2.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。考查三个方面:A 存在性(相交);B 中点;C 垂直(k1k2 1)注:1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差
11、法.3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等)(4)求曲线轨迹常见做法:定义法、直接法(步骤:建设现(限)代化)、代入法(利用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法、交轨法等。例例 1 1.已知定点F1(3,0),F2(3,0),在满足下列条件的平面上动点P 的轨迹中是椭圆的是(答:C);APFBPFCPFDPF11 PF2101 PF2 41 PF2 62 PF22 12例例 2 2 已知双曲线的离心率为2,F1、F2是左
12、右焦点,P 为双曲线上一点,且F1PF2 60,SPF1F2x2y21)12 3求该双曲线的标准方程(答:412例例 3 3 已知椭圆的一个顶点为A(0,-1),焦点在 x 轴上,若由焦点到直线的距离为3.(1)求椭圆分方程;(2)设椭圆与直线相交于不同的两点 M,N,当|AM|=|AN|时,求 m 的取值范围。x21 y21;m(,2))(答:32y2 1相交于两点 P1、P2,求线段 P1P2中点的轨迹方程。例例 4 4 过点 A(2,1)的直线与双曲线x 22人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第5页人教版高中数学知识点总结:新课标人教A版高中数学选修2
13、-1知识点总结-第5页第三章第三章 空间向量与立体几何空间向量与立体几何1、空间向量及其运算设a x1,y1,z1,b x2,y2,z2,则1a b x1 x2,y1 y2,z1 z22a b x1 x2,y1 y2,z1 z23a x1,y1,z14ab x1x2 y1y2 z1z25若a、b为非零向量,则a b ab 0 x1x2 y1y2 z1z2 06若b 0,则a/b a b x1x2,y1y2,z1z27a aa x12 y12 z12aba bx1x2 y1y2 z1z2x y z x y z2121212222228cosa,b 9x1,y1,z1,x2,y2,z2,则d x2
14、 x1y2 y1z2 z1222(10)共面向量定理:p,a,b共面 p xa yb(x,yR);AP xAB yACP、A、B、C 四点共面 OP OA xAB yAC OP xOA yOB zOC(其中x y z 1)(11)空间向量基本定理p xa yb zc(x,y,zR)(不共面的三个向量a,b,c构成一组基底,任意两个向量都共面)2、平行:(直线的方向向量,平面的法向量)(a,b是 a,b 的方向向量,n是平面的法向量)线线平行:a/ba/bc是内不共线向量)线面平行:a/a n或a/b,b 或a xb yc(b,人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结
15、-第6页人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第6页面面平行:/n1/n23、垂直线线垂直:a ba b ab 0,ac(,b是c内不共线向量)线面垂直:a a/n或a b面面垂直:n1 n24、夹角问题线线角cos|cos a,b|ab|(注意异面直线夹角范围0)2|a|b|an|a|n|线面角sin|cos a,n|二面角|cos|cos n1,n2|n1n2|(一般步骤求平面的法向量;计算法向量夹角;回|n1|n2|答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无需说明理由)1.距离问题(一般是求点面距离,线面距离,面面
16、距离转化为点到面的距离)P 到平面的距离d|PAn|(其中A是平面内任一点,n为平面的法向量)|n|2.立体几何解题一般步骤坐标法:建系(选择两两垂直的直线,借助于已有的垂直关系构造);写点坐标;写向量的坐标;向量运算;将向量形式的结果转化为最终结果。基底法:选择一组基底(一般是共起点的三个向量);将向量用基底表示;向量运算;将向量形式的结果转化为最终结果。几何法:作、证、求作、证、求异面直线夹角平移直线(借助中位线平行四边形等平行线);线面角找准面的垂线,借助直角三角形的知识解决;二面角定义法作二面角,三垂线定理作二面角;作交线的垂面.人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第7页人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结-第7页