《二项式定理辅导教案- 高二下学期数学人教A版(2019)选择性必修第三册.docx》由会员分享,可在线阅读,更多相关《二项式定理辅导教案- 高二下学期数学人教A版(2019)选择性必修第三册.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第六讲 二项式定理1二项式定理:,2基本概念:二项式展开式:右边的多项式叫做的二项展开式。二项式系数:展开式中各项的系数.项数:共项,是关于与的齐次多项式通项:展开式中的第项叫做二项式展开式的通项。用表示。3注意关键点:项数:展开式中总共有项。顺序:注意正确选择,其顺序不能更改。与是不同的。指数:的指数从逐项减到,是降幂排列。的指数从逐项减到,是升幂排列。各项的次数和等于.系数:注意正确区分二项式系数与项的系数,二项式系数依次是项的系数是与的系数(包括二项式系数)。4常用的结论:令 5性质:二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即,二项式系数和:令,则二项式系数的和为,
2、变形式。奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令,则,从而得到:奇数项的系数和与偶数项的系数和:二项式系数的最大项:如果二项式的幂指数是偶数时,则中间一项的二项式系数取得最大值。如果二项式的幂指数是奇数时,则中间两项的二项式系数,同时取得最大值。系数的最大项:求展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为,设第项系数最大,应有,从而解出来。题型1 二项式的展开式 例1.(1)求的展开式; (2)展开练习1.=( ) 1 -1 练习2.用二项式定理展开: (1) (2) 题型2 二项展开式中的特定项问题 例2.求二项式的展开式中的常数项例3.求二项式展开式
3、中的有理项练习3.求的展开式中系数为有理数的项题型3 二项式系数与项的系数问题 例4.在(1) 第5项的二项式系数及第5项的系数;(2) 的系数.练习4. 练习5. (结果用数值表示)题型4 二项式系数和的问题 例5.已知,求(1) ;(2) ;(3) ;(4) 练习6.已知(1)(2)练习7.若(1) 各项系数之和;(2) 奇数项系数的和与偶数项系数的和.题型5 二项式系数最值问题例6.已知,若展开式中第项,第项与第项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?练习8.在的展开式中,只有第项的二项式最大,则展开式中的常数项是多少?题型6 二项式定理综合问题例7.求当的展开式中的一次项的系数例8.例9.若的展开式中各项系数之和为,则展开式的常数项为多少?课后作业1.2.求展开式中的系数?3.求二项式的展开式中的常数项?4.若的二项展开式中第项为常数项,则5.若展开式前三项的二项式系数和等于,求的展开式中系数最大的项?