24平面向量数量积的物理背景及其含义(教育精品).ppt

上传人:gsy****95 文档编号:88514272 上传时间:2023-04-26 格式:PPT 页数:19 大小:325KB
返回 下载 相关 举报
24平面向量数量积的物理背景及其含义(教育精品).ppt_第1页
第1页 / 共19页
24平面向量数量积的物理背景及其含义(教育精品).ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《24平面向量数量积的物理背景及其含义(教育精品).ppt》由会员分享,可在线阅读,更多相关《24平面向量数量积的物理背景及其含义(教育精品).ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.4.1 平面向量数量积的物理背景及其平面向量数量积的物理背景及其含义含义2.4.2 平面向量数量积的坐标表示、模、平面向量数量积的坐标表示、模、夹角夹角 一般地,实数一般地,实数与向量与向量a 的的积积是一个是一个向向量量,记作,记作a,它的它的长度长度和和方向方向规定如下:规定如下:(1)|a|=|a|(2)当当0时时,a 的方向与的方向与a方向相同;方向相同;当当0时时,a 的方向与的方向与a方向相反;方向相反;特别地,当特别地,当=0或或a=0时时,a=0 设设a,b为任意向量,为任意向量,,为为任意实数任意实数,则有:,则有:(a)=()a (+)a=a+a (a+b)=a+b已知

2、两个非零向量已知两个非零向量a和和b,作,作OA=a,OB=b,则则AOB=(0 180)叫做向量叫做向量a与与b的的夹角夹角。OBA当0时,a与b同向;OAB当180时,a与b反向;OABB当90时,称a与b垂直,记为ab.OAab 我们学过功的概念,即一个物体在力我们学过功的概念,即一个物体在力F的作用下产生位移的作用下产生位移s(如图)如图)FS力力F所做的功所做的功W可用下式计算可用下式计算 W=|F|S|cos 其中其中是是F与与S的夹角的夹角 从力所做的功出发,我们引入向量从力所做的功出发,我们引入向量“数量积数量积”的概念。的概念。已知两个非零向量已知两个非零向量a与与b,它们的

3、它们的夹角为夹角为,我们把数量我们把数量|a|b|cos叫做叫做a与与b的的数量积数量积(或(或内积内积),记作),记作ab ab=|a|b|cos规定规定:零向量与任一向量的数量积为零向量与任一向量的数量积为0。|a|cos(|b|cos)叫)叫做向量做向量a在在b方向上(向方向上(向量量b在在a方向上)的方向上)的投影投影。注意:向量注意:向量的数量积是的数量积是一个数量。一个数量。向量的数量积是一个数量,那么它什向量的数量积是一个数量,那么它什么时候为正,什么时候为负?么时候为正,什么时候为负?ab=|a|b|cos当当0 90时时ab为正;为正;当当90 180时时ab为负。为负。当当

4、=90时时ab为零。为零。设设是非零向量,是非零向量,方向相同的方向相同的单位向量,单位向量,的的夹角,则夹角,则特别地特别地OAB abB1解:解:ab=|a|b|cos=54cos120 =54(-1/2)=10例例1 1 已知已知|a|=5|a|=5,|b|=4|b|=4,a a与与b b的夹角的夹角=120=120,求,求a ab b。例例2 已知已知a=(1,1),b=(2,0),求求ab。解:解:|a|=2,|b|=2,=45 ab=|a|b|cos=22cos45 =2OAB|b|cos abB1等于等于的的长度长度与与的的乘积。乘积。练习:练习:1 1若若a=0,则对任一向量则

5、对任一向量b ,有,有a b=02若若a 0,则对任一非零向量则对任一非零向量b,有有a b03 3若若a 00,a b b=0,则,则b=04 4若若a b=0,则,则a b中至少有一个为中至少有一个为05 5若若a0,a b=b c,则,则a=c6 6若若a b=a c,则则bc,当且仅当当且仅当a=0 时成立时成立7对任意向量对任意向量 a 有有二、二、平面向量的数量积的运算律平面向量的数量积的运算律:数量积的运算律:数量积的运算律:其中,其中,是是任意三个向量,任意三个向量,注:注:则 (a+b)c=ON|c|=(OM+MN)|c|=OM|c|+MN|c|=ac+bc.ONMa+bba

6、c 向量a、b、a+b在c上的射影的数量分别是OM、MN、ON,证明运算律证明运算律(3)例例 3:求证:求证:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.证明:证明:(1)(ab)2(ab)(ab)(ab)a(ab)baabaabbba22abb2.例例 3:求证:求证:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.证明:证明:(2)(ab)(ab)(ab)a(ab)b aabaabbb a2b2.例例4、的夹角为的夹角为解解:作业:作业:3、用向量方法证明:直径所对的圆周、用向量方法证明:直径所对的圆周角为直角。角为直角。ABCO如图所示,已知如图所示,已知如图所示,已知如图所示,已知 OO,ABAB为直径,为直径,为直径,为直径,C C为为为为 OO上任意一点。求证上任意一点。求证上任意一点。求证上任意一点。求证ACB=90ACB=90分析:要证分析:要证ACB=90,只须证向只须证向量量 ,即,即 。解:解:设设 则则 ,由此可得:由此可得:即即 ,ACB=90

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁