微积分26闭区间上连续函数的性质.ppt

上传人:wuy****n92 文档编号:88492268 上传时间:2023-04-26 格式:PPT 页数:23 大小:341.50KB
返回 下载 相关 举报
微积分26闭区间上连续函数的性质.ppt_第1页
第1页 / 共23页
微积分26闭区间上连续函数的性质.ppt_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《微积分26闭区间上连续函数的性质.ppt》由会员分享,可在线阅读,更多相关《微积分26闭区间上连续函数的性质.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 2.6 闭区间上连续函数的性质Th2.5Th2.4(最值定理最值定理)(有界定理有界定理)若条件不满足,则结论不一定成立若条件不满足,则结论不一定成立.非闭区间上的连续函数非闭区间上的连续函数,定理的结论不一定成立定理的结论不一定成立;闭区间上的不连续函数闭区间上的不连续函数,定理的结论不一定成立定理的结论不一定成立;定理定理2.6bamMC定理定理2.72.2.零值定理的应用零值定理的应用利用零值定理证明方程利用零值定理证明方程f(x)=0f(x)=0实根的存在性:实根的存在性:(1)(1)、构造函数、构造函数f(x)f(x)(2)(2)、构造闭区间、构造闭区间a,ba,b(3)(3)、验

2、证、验证f(x)f(x)在闭区间在闭区间a,ba,b上满足零值定理条件上满足零值定理条件例例证明证明例例证明证明证明证明证明证明定理定理2.8反函数连续性定理反函数连续性定理第二章第二章 复习复习一、数列极限一、数列极限2.数列极限存在定理:数列极限存在定理:1.极限四则运算法则极限四则运算法则单调有界原理单调有界原理夹逼定理夹逼定理二、函数极限二、函数极限1.函数极限的六种记法函数极限的六种记法2.函数极限的夹逼定理函数极限的夹逼定理3.函数极限四则运算法则函数极限四则运算法则(1).用直接代入法用直接代入法(满足四则运算法则条件满足四则运算法则条件)(2).对对型型,约去零因子约去零因子(

3、根式有理化法等根式有理化法等)(3).对对 型型,分子分母分子分母(均为多项式均为多项式)同除以最高次幂同除以最高次幂 三、无穷小量与无穷大量三、无穷小量与无穷大量1、无穷小量无穷小量,无穷大量的概念和性质无穷大量的概念和性质2、无穷小量的有关性质、无穷小量的有关性质(无穷小与函数极限的关系无穷小与函数极限的关系)(无穷小量与有界变量(无穷小量与有界变量(常数常数)之积仍为无穷小量)之积仍为无穷小量)(无穷小与无穷大的关系)(无穷小与无穷大的关系)3、无穷小量与无穷大量阶的比较、无穷小量与无穷大量阶的比较(1).高阶高阶,低阶低阶,同阶同阶,等价的无穷小量的定义等价的无穷小量的定义(2).等价

4、无穷小代换定理等价无穷小代换定理(常见的等价无穷小常见的等价无穷小)应用原则:应用原则:(1)只能对分子或分母的只能对分子或分母的乘积因子乘积因子作等价无穷小代换作等价无穷小代换,(2)只能在变量趋于只能在变量趋于0时可用常用的等价无穷小代换时可用常用的等价无穷小代换.四、函数的连续性四、函数的连续性1、函数在一点连续定义、函数在一点连续定义:2、基本初等函数与初等函数的连续性、基本初等函数与初等函数的连续性(1).三要素三要素(2).分段函数分段点处分段函数分段点处3、函数的间断点、函数的间断点(找出间断点并判断类型找出间断点并判断类型)第一类间断点第一类间断点可去间断点可去间断点跳跃间断点

5、跳跃间断点左右极限都存在左右极限都存在 第二类间断点第二类间断点左右极限至少有一个不存在左右极限至少有一个不存在函数在一点连续,则极限符号和函数符号可以交换。函数在一点连续,则极限符号和函数符号可以交换。五、闭区间上的连续函数性质五、闭区间上的连续函数性质1、有界定理、最值定理、介值定理、零值定理、有界定理、最值定理、介值定理、零值定理2、零值定理的应用、零值定理的应用利用零值定理证明方程利用零值定理证明方程f(x)=0f(x)=0实根的存在性:实根的存在性:(1)(1)、构造函数、构造函数f(x)f(x)(2)(2)、构造闭区间、构造闭区间a,ba,b(3)(3)、验证、验证f(x)f(x)在闭区间在闭区间a,ba,b上满足零值定理条件上满足零值定理条件4、运用函数连续性求极限(、运用函数连续性求极限(尤其对幂指函数尤其对幂指函数())第二章第二章 练练 习习1.求下列极限求下列极限5.设函数设函数在在 x=0 连续连续,求求 a,b.(2)求求(2000考研考研)证明证明 综上所述综上所述例例1证明证明

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁