《人教部初三九年级数学下册-反比例函数-名师教学PPT课件-(2).pptx》由会员分享,可在线阅读,更多相关《人教部初三九年级数学下册-反比例函数-名师教学PPT课件-(2).pptx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、钦州二中钦州二中 陈光豪陈光豪反比例函数的图象与性质反比例函数的图象与性质中考复习 第12课时 命题点命题点北部湾经济区北部湾经济区南宁南宁考情总结考情总结201820172016201520142013反比函反比函数的图数的图像与性像与性质质第第17题题反比例反比例函数解函数解析式的析式的确定确定第第18题题第第17题题第第17题题第第12题题中考地位中考地位根据反比例函数的根据反比例函数的增减性,判断自变增减性,判断自变量的取值范围量的取值范围主要在反比例函数主要在反比例函数的综合题中考查,的综合题中考查,常与一次函数、几常与一次函数、几何图形结合考查何图形结合考查k的几何意义的几何意义知
2、识结构图知识结构图 反比例反比例 函数函数概念概念 图象图象与性质与性质解析式(待定系数法)解析式(待定系数法)综合综合增减性增减性象限分布象限分布 比例系数比例系数k k与一次函数结合的综合题与一次函数结合的综合题 在实际生活中的应用在实际生活中的应用定义:形如_(k为常数,k0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数知识梳理1 反比例函数的概念1.1.反比例函数的概念是反比例函数的概念是?三种表达式:三种表达式:或或 xyk 或或ykx1(k0)2.反比例函数有几种表达方式?分别是?反比例函数有几种表达方式?分别是?防错提醒:(1)k0;(2)自变量x0;(3)函
3、数y0.例例1.下列函数中,下列函数中,y是是x的反比例函数的是(的反比例函数的是()C考点突破考点突破1 1 反比例函数的概念反比例函数的概念变式变式1.(2014河池)河池)若 是反比例函数,则 a 的值为 1考点突破考点突破1 1 反比例函数的概念反比例函数的概念归纳小结:结合反比例函数的三种形式求解 反比反比例函数例函数K KK K 0 0K K 0 0图像图像是双曲是双曲线线所在所在象限象限 象限象限(x x、y y同号同号)象限象限(x x、y y异异号号)增减性增减性 在每个象限内,在每个象限内,y y 随随 x x 的增大而的增大而 在每个象限内,在每个象限内,y y 随随 x
4、 x 的增大而的增大而 对称性对称性关于关于直线直线 和和 成轴对称,成轴对称,关于原点成关于原点成中心中心对称对称xyoxy o知识梳理2 反比例函数的图象和性质y=-xy=-xy=xy=x ”“”、“”“”或或“=”“=”)知识突破知识突破2 2 反比例函数的图象和性质反比例函数的图象和性质二、四二、四增大增大 0则 y1 y2(填“”、“”或“=”)m例例3.若反比例函数若反比例函数 的图像经过点(2,6),求反比例函数的解析式.知识突破知识突破3 求反比例函数解析式求反比例函数解析式 待定系数法求反比例函数的解析式:待定系数法求反比例函数的解析式:(1 1)设设:设反比例函数解析式:设
5、反比例函数解析式 .(2 2)代代:将图像上一点(将图像上一点(x x,y y)代入解析式得)代入解析式得 .(3 3)解解:解出待定系数:解出待定系数 的值;的值;(4 4)还原还原:将所求待定系数:将所求待定系数 的值代入所设的函数解析式中的值代入所设的函数解析式中求反比例函数解析式的步骤求反比例函数解析式的步骤 k=xyk=xy kk变式3(2019贵港改)如图一次函数y=x+b的图像与反比例函数 的图像交于点A(-2,n)和B,与x轴交于点C(-1,0),求出一次函数和反比例函数的解析式C解:把C(-1,0)代入y=x+b -1+b=0 解得b=1一次函数的解析式为y=x+1一次函数经
6、过点A(-2,n)n=-2+1=-1 即点A(-2,-1)将点B(-2,-1)代入 中 K=-2(-1)=2 反比例函数的解析式综合提升 中考真题再现1.1.(20182018柳州柳州1212)已知反比例函数的解析式为)已知反比例函数的解析式为 ,则,则 a a 取值范围(取值范围()A.a2 B.A.a2 B.a-2a-2 C.C.aa2 2 D.D.a=a=2 2C C2.2.(20172017钦州)钦州)在同一平面直角坐标系中,一次函数y=kx-1与反比例函数 (其中k0)的图象的形状大致是()A.B.C.D.C【解析】本题考查一次函数和反比例函数【解析】本题考查一次函数和反比例函数k
7、k决定图像的分布决定图像的分布一次函数y=kx-1,b=-1则可以排除A选项B选项:一次函数走下坡路,则k0,矛盾C选项:一次函数走下坡路,则k0,反比例函数二四象限,则k0,反比例函数二四象限,则k0,矛盾故选择C选项.3.3.(20172017北部湾经济区北部湾经济区1717)对于函数)对于函数 ,当函数值,当函数值y-1y-1时,自变量时,自变量x x的取值范围是的取值范围是 .-2x0 4.(2018玉林防城港24)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600煅烧时温度y()与时间x(min)成一
8、次函数关系;锻造时,温度y()与时间x(min)成反比例函数关系(如图)已知该材料初始温度是32(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;Oy()x(min)832600800ABCOy()x(min)832600800ABC解:(1)锻造时y与x的函数关系是反比例函数,设把C(8,600)代入 ,得k1=8600=4800 锻造时y与x的函数关系是煅烧时y与x成一次函数关系设y=k2x+b(k10)当y=800时,代入 中,解得 x=6 B(6,800)锻造时,把A(0,32),B(6,800)分别代入y=k2x+b煅烧时y与x成一次函数关系 y=128x
9、+32(0 x6)Oy()x(min)832600800ABC(2)将y=480代入反比函数 中得 ,解得x=10锻造操作的时间是 10-6=4 min答:锻造操作的时间是 4 min(2)根据工艺要求,当材料温度低于)根据工艺要求,当材料温度低于480时,时,须停止操作那么锻造的操作时间有多长?须停止操作那么锻造的操作时间有多长?总结升华反比例函数概念解析式(待定系数法)图像与性质x,y 的取值范围增减性比例系数k 应用与一次函数结合的综合与一次函数结合的综合在实际生活中的应用在实际生活中的应用2.你是否解决了本节课需要解决的四个问题?3.比例系数k决定了反比例函数的那些性质?1.本节课复习了什么内容?课后作业课后作业面对面练习册面对面练习册1.1.必做题:必做题:P21 2P21 2、3 3、4 4、6 6、12122.2.课后探究题:课后探究题:P21 P21 1212