高中数学圆锥曲线中的定点定值最值范围问题.ppt

上传人:wuy****n92 文档编号:88419907 上传时间:2023-04-26 格式:PPT 页数:45 大小:725.50KB
返回 下载 相关 举报
高中数学圆锥曲线中的定点定值最值范围问题.ppt_第1页
第1页 / 共45页
高中数学圆锥曲线中的定点定值最值范围问题.ppt_第2页
第2页 / 共45页
点击查看更多>>
资源描述

《高中数学圆锥曲线中的定点定值最值范围问题.ppt》由会员分享,可在线阅读,更多相关《高中数学圆锥曲线中的定点定值最值范围问题.ppt(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考第第2讲圆锥曲曲线中的定点、定中的定点、定值、最、最值、范、范围问题真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考高考定位圆锥曲线的综合问题包括:探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合运用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法进行求解,对考生的代数恒等变形能

2、力、计算能力等有较高的要求真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚

3、焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考安全文明网 2016安全文明驾驶常识模拟考试 安全文明驾驶常识2016年安全文明驾驶常识模拟 2016文明驾驶 2016文明驾驶考题安全文明网 科四安全文明驾驶考试安全文明网 c1安全文明驾驶考试安全文明网 b2安全文明驾驶考试安全文明网 a1安全文明驾驶考试科

4、目4考试 a2安全文明驾驶考试科目四考试 安全文明驾驶常识考试真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考考点整合1定点、定值问题在解析几何中,有些含有参数的直线或曲线,不论参数如何变化,其都过某定点,这类问题称为定点问题;有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动线中的参变量无关,这类问题统称为定值问题真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归

5、纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整

6、合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考探究提高(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为ykxt,由题设条件将t用k表示为tmk,得yk(xm),故动直线过定点(m,0)(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对

7、对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考规律方法(1)先由特例得出一个值(此值一般就是定值),再证明定值:将问题转

8、化为证明待证式与参数(某些变量)无关(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归

9、纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升

10、华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考规律方法解决最值问题的常用方法:(1)数形结合法:根据待求值的几何意义,充分利用平面图形的几何性质求解(2)构建函数法:先引入变量,构建以待求量为因变量的函数,再求其最值,常用

11、基本不等式或导数法求最值(注意:有时需要换元后再求最值)真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合

12、热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考规律方法解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考【训练2】已知椭圆C1与抛物线C2的焦点均在x轴上且C1的中心和C2的顶点均为坐标原点O,从每条曲线上各取两个点,其坐标如下表所示:真题

13、感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考1定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值

14、,也可以先通过特定位置猜测结论后进行一般性证明,对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考2圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;真题感悟真题感悟考点考点整合整合热点聚焦热点聚焦题题型突破型突破归纳总结归纳总结思思维升华维升华专题训练专题训练对对接高考接高考利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的求法,确定参数的取值范围.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁