电工学(第七版)上册秦曾煌第三章.ppt

上传人:豆**** 文档编号:88399574 上传时间:2023-04-26 格式:PPT 页数:74 大小:1.97MB
返回 下载 相关 举报
电工学(第七版)上册秦曾煌第三章.ppt_第1页
第1页 / 共74页
电工学(第七版)上册秦曾煌第三章.ppt_第2页
第2页 / 共74页
点击查看更多>>
资源描述

《电工学(第七版)上册秦曾煌第三章.ppt》由会员分享,可在线阅读,更多相关《电工学(第七版)上册秦曾煌第三章.ppt(74页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、电工学(第七版)上册秦曾煌第三章下一页下一页章目录章目录返回返回上一页上一页退出退出3.2 储能元件和换路定则储能元件和换路定则3.3 RC电路的响应电路的响应3.4 一阶线性电路暂态分析的三要素法一阶线性电路暂态分析的三要素法3.6 RL电路的响应电路的响应3.5 微分电路和积分电路微分电路和积分电路3.1 电阻元件、电感元件、电容元件电阻元件、电感元件、电容元件第第3章章 电路的暂态分析电路的暂态分析下一页下一页章目录章目录返回返回上一页上一页退出退出下一页下一页章目录章目录返回返回上一页上一页退出退出下一页下一页章目录章目录返回返回上一页上一页退出退出下一页下一页章目录章目录返回返回上一

2、页上一页退出退出 描述线圈通有电流时产生描述线圈通有电流时产生描述线圈通有电流时产生描述线圈通有电流时产生磁场、储存磁场能量的性质。磁场、储存磁场能量的性质。磁场、储存磁场能量的性质。磁场、储存磁场能量的性质。1.1.物理意义物理意义物理意义物理意义电感电感:(H)线性电感线性电感线性电感线性电感:L L为常数为常数为常数为常数;非线性电感非线性电感非线性电感非线性电感:L L不为常数不为常数不为常数不为常数3.1.2 电感元件电感元件电流通过电流通过N匝匝线圈产生线圈产生(磁链磁链)电流通过电流通过一匝一匝线圈产生线圈产生(磁通磁通)2.2.自感电动势:自感电动势:自感电动势:自感电动势:电

3、感元件电感元件电感元件电感元件下一页下一页章目录章目录返回返回上一页上一页退出退出3.3.电感元件储能电感元件储能电感元件储能电感元件储能根据基尔霍夫定律可得:根据基尔霍夫定律可得:将上式两边同乘上将上式两边同乘上 i,并积分,则得:,并积分,则得:即电感将电能转换为磁场能储存在线圈中,当电即电感将电能转换为磁场能储存在线圈中,当电流增大时流增大时,磁场能增大磁场能增大,电感元件从电源取用电能;电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还当电流减小时,磁场能减小,电感元件向电源放还能量。能量。磁场能磁场能磁场能磁场能下一页下一页章目录章目录返回返回上一页上一页退出退出3

4、.1.3 电容元件电容元件 描述电容两端加电源后,其两个极板描述电容两端加电源后,其两个极板描述电容两端加电源后,其两个极板描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质上分别聚集起等量异号的电荷,在介质上分别聚集起等量异号的电荷,在介质上分别聚集起等量异号的电荷,在介质中建立起电场中建立起电场中建立起电场中建立起电场,并储存电场能量的性质。并储存电场能量的性质。并储存电场能量的性质。并储存电场能量的性质。电容:电容:当电压当电压u变化时,在电路中产生电流变化时,在电路中产生电流:电容元件储能电容元件储能将上式两边同乘上将上式两边同乘上 u,并积分,则得:,并积分,则得:下

5、一页下一页章目录章目录返回返回上一页上一页退出退出 即电容将电能转换为电场能储存在电容中,当电即电容将电能转换为电场能储存在电容中,当电即电容将电能转换为电场能储存在电容中,当电即电容将电能转换为电场能储存在电容中,当电压增大时压增大时压增大时压增大时,电场能增大电场能增大电场能增大电场能增大,电容元件从电源取用电能;电容元件从电源取用电能;电容元件从电源取用电能;电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还当电压减小时,电场能减小,电容元件向电源放还当电压减小时,电场能减小,电容元件向电源放还当电压减小时,电场能减小,电容元件向电源放还能量。能量。能量。能量。电场能电

6、场能电场能电场能电容元件储能电容元件储能电容元件储能电容元件储能本节所讲的均为线性元件,即本节所讲的均为线性元件,即本节所讲的均为线性元件,即本节所讲的均为线性元件,即R R、L L、C C都是常数。都是常数。都是常数。都是常数。下一页下一页章目录章目录返回返回上一页上一页退出退出3.2 储能元件和换路定则储能元件和换路定则1.1.电路中产生暂态过程的原因电路中产生暂态过程的原因电路中产生暂态过程的原因电路中产生暂态过程的原因电流电流 i 随电压随电压 u 比例变化。比例变化。合合S后:后:所以电阻电路不存在所以电阻电路不存在暂态暂态暂态暂态过程过程(R耗能元件耗能元件)。图图(a):合合S前

7、:前:例:例:例:例:下一页下一页章目录章目录返回返回上一页上一页退出退出3.2 储能元件和换路定则储能元件和换路定则图图图图(b)(b)合合合合S S后:后:后:后:由零逐渐增加到由零逐渐增加到由零逐渐增加到由零逐渐增加到U U所以电容电路存在暂态过程所以电容电路存在暂态过程所以电容电路存在暂态过程所以电容电路存在暂态过程(C C储能元件储能元件储能元件储能元件)合合合合S S前前前前:U暂态暂态稳态稳态Ot下一页下一页章目录章目录返回返回上一页上一页退出退出 产生暂态过程的必要条件:产生暂态过程的必要条件:产生暂态过程的必要条件:产生暂态过程的必要条件:L储能:储能:换路换路:电路状态的改

8、变。如:电路状态的改变。如:电路状态的改变。如:电路状态的改变。如:电路接通、切断、电路接通、切断、电路接通、切断、电路接通、切断、短路、电压改变或参数改变短路、电压改变或参数改变短路、电压改变或参数改变短路、电压改变或参数改变不能突变不能突变Cu C 储能:储能:产生暂态过程的原因:产生暂态过程的原因:产生暂态过程的原因:产生暂态过程的原因:由于物体所具有的能量不能跃变而造成由于物体所具有的能量不能跃变而造成在换路瞬间储能元件的能量也不能跃变在换路瞬间储能元件的能量也不能跃变在换路瞬间储能元件的能量也不能跃变在换路瞬间储能元件的能量也不能跃变(1)(1)电路中含有储能元件电路中含有储能元件电

9、路中含有储能元件电路中含有储能元件(内因内因内因内因)(2)(2)电路发生换路电路发生换路电路发生换路电路发生换路(外因外因外因外因)下一页下一页章目录章目录返回返回上一页上一页退出退出电容电路电容电路电容电路电容电路:注:换路定则仅用于换路瞬间来确定暂态过程中注:换路定则仅用于换路瞬间来确定暂态过程中 uC、iL初始值。初始值。设:设:t=0 表示换路瞬间表示换路瞬间(定为计时起点定为计时起点)t=0-表示换路前的终了瞬间表示换路前的终了瞬间 t=0+表示换路后的初始瞬间(初始值)表示换路后的初始瞬间(初始值)2.2.换路定则换路定则换路定则换路定则电感电路:电感电路:电感电路:电感电路:下

10、一页下一页章目录章目录返回返回上一页上一页退出退出3.3.初始值的确定初始值的确定初始值的确定初始值的确定求解要点:求解要点:求解要点:求解要点:(2)(2)其它电量初始值的求法。其它电量初始值的求法。其它电量初始值的求法。其它电量初始值的求法。初始值:电路中各初始值:电路中各初始值:电路中各初始值:电路中各 u u、i i 在在在在 t t=0=0+时的数值。时的数值。时的数值。时的数值。(1)1)u uC C(0(0+)、i iL L(0(0+)的求法。的求法。的求法。的求法。1)1)先由先由先由先由t t=0=0-的电路求出的电路求出的电路求出的电路求出 u uC C(0 0 )、i i

11、L L(0 0 );2)2)根据换路定律求出根据换路定律求出根据换路定律求出根据换路定律求出 u uC C(0(0+)、i iL L(0(0+)。由由由由t t=0=0+的等效电路求其它电量的初始值的等效电路求其它电量的初始值的等效电路求其它电量的初始值的等效电路求其它电量的初始值;下一页下一页章目录章目录返回返回上一页上一页退出退出暂态过程初始值的确定暂态过程初始值的确定暂态过程初始值的确定暂态过程初始值的确定例例例例1 1解:解:解:解:(1)(1)由换路前电路求由换路前电路求由换路前电路求由换路前电路求由已知条件知由已知条件知由已知条件知由已知条件知根据换路定则得:根据换路定则得:根据换

12、路定则得:根据换路定则得:已知:换路前电路处稳态,已知:换路前电路处稳态,已知:换路前电路处稳态,已知:换路前电路处稳态,C C、L L 均未储能。均未储能。均未储能。均未储能。试求:电路中各电压和电试求:电路中各电压和电试求:电路中各电压和电试求:电路中各电压和电流的初始值。流的初始值。流的初始值。流的初始值。下一页下一页章目录章目录返回返回上一页上一页退出退出暂态过程初始值的确定暂态过程初始值的确定暂态过程初始值的确定暂态过程初始值的确定例例例例1:1:,换路瞬间,电容元件可视为短路。换路瞬间,电容元件可视为短路。换路瞬间,电容元件可视为短路。换路瞬间,电容元件可视为短路。,换路瞬间,电感

13、元件可视为开路。换路瞬间,电感元件可视为开路。换路瞬间,电感元件可视为开路。换路瞬间,电感元件可视为开路。iC、uL 产生突变产生突变(2)由由t=0+电路,求其余各电流、电压的初始值电路,求其余各电流、电压的初始值下一页下一页章目录章目录返回返回上一页上一页退出退出例例例例2 2:换路前电路处于稳态。换路前电路处于稳态。换路前电路处于稳态。换路前电路处于稳态。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。解:解:(1)由由t=0-电路求电路求 uC(0)、iL(0)换路前电路已处于稳态:

14、换路前电路已处于稳态:电容元件视为开路;电容元件视为开路;电感元件视为短路。电感元件视为短路。由由t=0-电路可求得:电路可求得:下一页下一页章目录章目录返回返回上一页上一页退出退出例例例例2 2:换路前电路处于稳态。换路前电路处于稳态。换路前电路处于稳态。换路前电路处于稳态。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。解:解:由换路定则:由换路定则:下一页下一页章目录章目录返回返回上一页上一页退出退出例例例例2 2:换路前电路处稳态。换路前电路处稳态。换路前电路处稳态。换路前电路处稳态

15、。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。解:解:(2)由由t=0+电路求电路求 iC(0+)、uL(0+)由图可列出由图可列出带入数据带入数据i iL L(0(0+)u uc c(0(0+)下一页下一页章目录章目录返回返回上一页上一页退出退出例例例例2 2:换路前电路处稳态。换路前电路处稳态。换路前电路处稳态。换路前电路处稳态。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。试求图示电路中各个电压和电流的初始值。解:

16、解:解之得解之得 并可求出并可求出下一页下一页章目录章目录返回返回上一页上一页退出退出计算结果:计算结果:计算结果:计算结果:电量电量换路瞬间,换路瞬间,换路瞬间,换路瞬间,不能跃变,但不能跃变,但不能跃变,但不能跃变,但可以跃变。可以跃变。可以跃变。可以跃变。下一页下一页章目录章目录返回返回上一页上一页退出退出小结小结 1.换路瞬间,换路瞬间,不能突变。其它电量均可不能突变。其它电量均可能突变,变不变由计算结果决定;能突变,变不变由计算结果决定;3.换路瞬间,换路瞬间,电感相当于恒流源,电感相当于恒流源,其值等于其值等于,电感相当于断路。,电感相当于断路。2.换路瞬间,换路瞬间,电容相当于恒

17、压电容相当于恒压源,其值等于源,其值等于电容相当于短电容相当于短路;路;下一页下一页章目录章目录返回返回上一页上一页退出退出3.3 RC电路的响应电路的响应 用经典法分析电路的暂态过程,就是用经典法分析电路的暂态过程,就是用经典法分析电路的暂态过程,就是用经典法分析电路的暂态过程,就是根据激励根据激励根据激励根据激励(电电电电源电压或电流源电压或电流源电压或电流源电压或电流),通过求解电路的微分方程得出电路的,通过求解电路的微分方程得出电路的,通过求解电路的微分方程得出电路的,通过求解电路的微分方程得出电路的响应响应响应响应(电压和电流电压和电流电压和电流电压和电流)。零输入响应零输入响应:无

18、电源激励无电源激励,输入信号为零输入信号为零,仅由电容元仅由电容元件的初始状态所产生的电路件的初始状态所产生的电路的响应。的响应。实质:实质:实质:实质:RCRC电路的放电过程电路的放电过程电路的放电过程电路的放电过程3.3.1 RC电路的零输入响应电路的零输入响应下一页下一页章目录章目录返回返回上一页上一页退出退出代入上式得代入上式得换路前电路已处稳态换路前电路已处稳态 电容电容C 经电阻经电阻R 放电放电t=0时,开关时,开关一阶线性常系数一阶线性常系数 齐次微分方程齐次微分方程(1)列列 KVL方程方程1.电容电压电容电压 uC 的变化规律的变化规律(t 0)图示电路图示电路3.3.1

19、RC电路的零输入响应电路的零输入响应下一页下一页章目录章目录返回返回上一页上一页退出退出(2(2)解方程:解方程:解方程:解方程:特征方程特征方程 由初始值确定积分常数由初始值确定积分常数由初始值确定积分常数由初始值确定积分常数 A A齐次微分方程的通解:齐次微分方程的通解:电容电压电容电压电容电压电容电压 u uC C 从初始值按指数规律衰减,衰减的从初始值按指数规律衰减,衰减的从初始值按指数规律衰减,衰减的从初始值按指数规律衰减,衰减的快慢由快慢由快慢由快慢由RC RC 决定。决定。决定。决定。(3(3)电容电压电容电压电容电压电容电压 u uC C 的变化规律的变化规律的变化规律的变化规

20、律下一页下一页章目录章目录返回返回上一页上一页退出退出电阻电压:电阻电压:放电电流放电电流 电容电压电容电压电容电压电容电压2.2.电流及电流及电流及电流及电阻电压的变化规律电阻电压的变化规律电阻电压的变化规律电阻电压的变化规律tO3.、变化曲线变化曲线变化曲线变化曲线下一页下一页章目录章目录返回返回上一页上一页退出退出4.4.时间常数时间常数时间常数时间常数(2)物理意义物理意义令令:单位单位单位单位:S:S(1)量纲量纲当当 时时时间常数时间常数时间常数时间常数 决定电路暂态过程变化的快慢决定电路暂态过程变化的快慢决定电路暂态过程变化的快慢决定电路暂态过程变化的快慢时间常数时间常数等于电压

21、等于电压衰减到初始值衰减到初始值U0 的的所需的时间。所需的时间。下一页下一页章目录章目录返回返回上一页上一页退出退出0.368U 越大,曲线变化越慢,越大,曲线变化越慢,越大,曲线变化越慢,越大,曲线变化越慢,达到稳态所需要的时达到稳态所需要的时达到稳态所需要的时达到稳态所需要的时间越长。间越长。间越长。间越长。时间常数时间常数时间常数时间常数 的物理意义的物理意义的物理意义的物理意义UtOuc下一页下一页章目录章目录返回返回上一页上一页退出退出当当 t t=5=5 时,过渡过程基本结束,时,过渡过程基本结束,时,过渡过程基本结束,时,过渡过程基本结束,u uC C达到稳态值。达到稳态值。达

22、到稳态值。达到稳态值。(3)(3)暂态时间暂态时间暂态时间暂态时间理论上认为理论上认为理论上认为理论上认为 、电路达稳态电路达稳态电路达稳态电路达稳态 工程上认为工程上认为工程上认为工程上认为 、电容放电基本结束。电容放电基本结束。电容放电基本结束。电容放电基本结束。t t0.368U 0.135U 0.050U 0.018U 0.007U 0.002U随时间而衰减随时间而衰减随时间而衰减随时间而衰减下一页下一页章目录章目录返回返回上一页上一页退出退出 3.3.2 RC电路的零状态响应电路的零状态响应零状态响应零状态响应:储能元件的初储能元件的初始能量为零,始能量为零,仅由电源激励仅由电源激励

23、所产生的电路的响应。所产生的电路的响应。实质:实质:实质:实质:RCRC电路的充电过程电路的充电过程电路的充电过程电路的充电过程分析:分析:分析:分析:在在在在t t=0=0时,合上开关时,合上开关时,合上开关时,合上开关S S,此时此时此时此时,电路实为输入一电路实为输入一电路实为输入一电路实为输入一 个阶跃电压个阶跃电压个阶跃电压个阶跃电压u,如图。,如图。,如图。,如图。与恒定电压不同,其与恒定电压不同,其与恒定电压不同,其与恒定电压不同,其电压电压电压电压u u表达式表达式表达式表达式Utu阶跃电压阶跃电压O下一页下一页章目录章目录返回返回上一页上一页退出退出一阶线性常系数一阶线性常系

24、数非齐次微分方程非齐次微分方程方程的通解方程的通解方程的通解方程的通解=方程的特解方程的特解方程的特解方程的特解+对应齐次方程的通解对应齐次方程的通解对应齐次方程的通解对应齐次方程的通解1.1.u uC C的变化规律的变化规律的变化规律的变化规律(1(1)列列列列 KVLKVL方程方程方程方程 3.3.2 RC电路的零状态响应电路的零状态响应(2)(2)解方程解方程解方程解方程求特解求特解 :方程的通解方程的通解方程的通解方程的通解:下一页下一页章目录章目录返回返回上一页上一页退出退出 求对应齐次微分方程的通解求对应齐次微分方程的通解求对应齐次微分方程的通解求对应齐次微分方程的通解通解即:通解

25、即:的解的解微分方程的通解为微分方程的通解为微分方程的通解为微分方程的通解为求特解求特解-(方法二)(方法二)(方法二)(方法二)确定积分常数确定积分常数确定积分常数确定积分常数A A根据换路定则在根据换路定则在 t=0+时,时,下一页下一页章目录章目录返回返回上一页上一页退出退出tO(3)(3)电容电压电容电压电容电压电容电压 u uC C 的变化规律的变化规律的变化规律的变化规律暂态分量暂态分量稳态分量稳态分量-U+U仅存在于暂仅存在于暂态过程中态过程中 63.2%U-36.8%U电路达到稳定电路达到稳定状态时的电压状态时的电压下一页下一页章目录章目录返回返回上一页上一页退出退出3.3.、

26、变化曲线变化曲线变化曲线变化曲线当当 t=时时 表示电容电压表示电容电压表示电容电压表示电容电压 u uC C 从初始值从初始值从初始值从初始值上升到上升到上升到上升到 稳态值的稳态值的稳态值的稳态值的63.2%63.2%时所需的时间。时所需的时间。时所需的时间。时所需的时间。2.2.电流电流电流电流 i iC C 的变化规律的变化规律的变化规律的变化规律4.4.时间常数时间常数时间常数时间常数 的的的的物理意义物理意义物理意义物理意义为什么在为什么在为什么在为什么在 t t=0=0时时时时电流最大?电流最大?电流最大?电流最大?Utuc,ic下一页下一页章目录章目录返回返回上一页上一页退出退

27、出3.3.3 RC电路的全响应电路的全响应1.1.uC 的变化规律的变化规律的变化规律的变化规律 全响应全响应:电源激励、电容元件电源激励、电容元件的初始状态均不为零时电路的的初始状态均不为零时电路的响应。响应。根据叠加定理根据叠加定理根据叠加定理根据叠加定理 全响应全响应全响应全响应=零输入响应零输入响应零输入响应零输入响应+零状态响应零状态响应零状态响应零状态响应下一页下一页章目录章目录返回返回上一页上一页退出退出稳态分量稳态分量零输入响应零输入响应零状态响应零状态响应暂态分量暂态分量结论结论结论结论2 2:全响应全响应全响应全响应=稳态分量稳态分量稳态分量稳态分量+暂态分量暂态分量暂态分

28、量暂态分量全响应全响应 结论结论结论结论1 1:全响应全响应全响应全响应=零输入响应零输入响应零输入响应零输入响应+零状态响应零状态响应零状态响应零状态响应稳态值稳态值初始值初始值下一页下一页章目录章目录返回返回上一页上一页退出退出U0.632U 越大,曲线变化越慢,越大,曲线变化越慢,越大,曲线变化越慢,越大,曲线变化越慢,达到稳态时间越长达到稳态时间越长达到稳态时间越长达到稳态时间越长。结论:结论:结论:结论:当当当当 t t=5=5 时时时时,暂态基本结束暂态基本结束暂态基本结束暂态基本结束,u uC C 达到稳态值。达到稳态值。达到稳态值。达到稳态值。0.9980.998U Ut t0

29、0 00.6320.632U U 0.8650.865U U 0.9500.950U U 0.9820.982U U 0.9930.993U UtO下一页下一页章目录章目录返回返回上一页上一页退出退出稳态解稳态解初始值初始值3.4 一阶线性电路暂态分析的三要素法一阶线性电路暂态分析的三要素法 仅含一个储能元件或可等效仅含一个储能元件或可等效仅含一个储能元件或可等效仅含一个储能元件或可等效为一个储能元件的线性电路,为一个储能元件的线性电路,为一个储能元件的线性电路,为一个储能元件的线性电路,无论简繁,它的微分方程都是无论简繁,它的微分方程都是无论简繁,它的微分方程都是无论简繁,它的微分方程都是一

30、阶常系数线性微分方程一阶常系数线性微分方程一阶常系数线性微分方程一阶常系数线性微分方程 据经典法推导结果据经典法推导结果据经典法推导结果据经典法推导结果全响应全响应全响应全响应下一页下一页章目录章目录返回返回上一页上一页退出退出:代表一阶电路中任一电压、电流函数:代表一阶电路中任一电压、电流函数:代表一阶电路中任一电压、电流函数:代表一阶电路中任一电压、电流函数式中式中式中式中,初始值初始值初始值初始值-(三要素)(三要素)(三要素)(三要素)稳态值稳态值-时间常数时间常数时间常数时间常数-在直流电源激励的情况下,一阶线性电路微分方在直流电源激励的情况下,一阶线性电路微分方在直流电源激励的情况

31、下,一阶线性电路微分方在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式:程解的通用表达式:程解的通用表达式:程解的通用表达式:利用求三要素的方法求解暂态过程,称为利用求三要素的方法求解暂态过程,称为三要素法三要素法。一阶电路都可以应用三要素法求解,一阶电路都可以应用三要素法求解,一阶电路都可以应用三要素法求解,一阶电路都可以应用三要素法求解,在求得在求得在求得在求得 、和和和和 的基础上的基础上的基础上的基础上,可直接写出电路的响应可直接写出电路的响应可直接写出电路的响应可直接写出电路的响应(电压或电流电压或电流电压或电流电压或电流)。下一页下一页章目录章目录返回返回上一页上一页退出

32、退出电路响应的变化曲线电路响应的变化曲线tOtOtOtO下一页下一页章目录章目录返回返回上一页上一页退出退出三要素法求解暂态过程的要点三要素法求解暂态过程的要点 起点起点起点起点(1)(1)求初始值、稳态值、时间常数;求初始值、稳态值、时间常数;求初始值、稳态值、时间常数;求初始值、稳态值、时间常数;(3)(3)画出暂态电路电压、电流随时间变化的曲线。画出暂态电路电压、电流随时间变化的曲线。画出暂态电路电压、电流随时间变化的曲线。画出暂态电路电压、电流随时间变化的曲线。(2)(2)将求得的三要素结果代入暂态过程通用表达式;将求得的三要素结果代入暂态过程通用表达式;将求得的三要素结果代入暂态过程

33、通用表达式;将求得的三要素结果代入暂态过程通用表达式;t tf f(t t)O O 终点终点终点终点下一页下一页章目录章目录返回返回上一页上一页退出退出 求换路后电路中的电压和电流求换路后电路中的电压和电流求换路后电路中的电压和电流求换路后电路中的电压和电流,其中其中其中其中电容电容 C 视为开视为开路路,电感电感L视为短路视为短路,即求解直流电阻性电路中的电压即求解直流电阻性电路中的电压和电流。和电流。(1)稳态值稳态值 的计算的计算响应中响应中“三要素三要素”的确定的确定例:例:下一页下一页章目录章目录返回返回上一页上一页退出退出 1)由由t=0-电路求电路求2)根据换路定则求出根据换路定

34、则求出3)由由t=0+时时等效电路,求所需其它各量等效电路,求所需其它各量的的或或在换路瞬间在换路瞬间在换路瞬间在换路瞬间 t t=(0=(0+)的等效电路中的等效电路中的等效电路中的等效电路中电容元件视为短路。电容元件视为短路。其值等于其值等于(1)若若电容元件用恒压源代替,电容元件用恒压源代替,其值等于其值等于I0,电感元件视为开路。电感元件视为开路。(2)若若 ,电感元件用恒流源代替电感元件用恒流源代替,注意:注意:(2)初始值初始值 的计算的计算 下一页下一页章目录章目录返回返回上一页上一页退出退出 1)1)对于简单的一阶电路对于简单的一阶电路对于简单的一阶电路对于简单的一阶电路 ,R

35、0=R;2)2)对于较复杂的一阶电路,对于较复杂的一阶电路,对于较复杂的一阶电路,对于较复杂的一阶电路,R R0 0为换路后的电路为换路后的电路为换路后的电路为换路后的电路除去电源和储能元件后,在储能元件两端所求得的除去电源和储能元件后,在储能元件两端所求得的除去电源和储能元件后,在储能元件两端所求得的除去电源和储能元件后,在储能元件两端所求得的无源二端网络的等效电阻。无源二端网络的等效电阻。无源二端网络的等效电阻。无源二端网络的等效电阻。(3)(3)时间常数时间常数时间常数时间常数 的计算的计算的计算的计算对于一阶对于一阶对于一阶对于一阶RCRC电路电路电路电路对于一阶对于一阶对于一阶对于一

36、阶RLRL电路电路电路电路 注意:注意:下一页下一页章目录章目录返回返回上一页上一页退出退出 R R0 0的计算类似于应用戴维宁的计算类似于应用戴维宁的计算类似于应用戴维宁的计算类似于应用戴维宁定理解题时计算电路等效电阻定理解题时计算电路等效电阻定理解题时计算电路等效电阻定理解题时计算电路等效电阻的方法。即从储能元件两端看的方法。即从储能元件两端看的方法。即从储能元件两端看的方法。即从储能元件两端看进去的等效电阻,如图所示。进去的等效电阻,如图所示。进去的等效电阻,如图所示。进去的等效电阻,如图所示。下一页下一页章目录章目录返回返回上一页上一页退出退出例例例例1 1:用三要素法求解用三要素法求

37、解用三要素法求解用三要素法求解解:解:电路如图,电路如图,t=0时合上开关时合上开关S,合,合S前电路已处于前电路已处于稳态。试求电容电压稳态。试求电容电压 和电流和电流 、。(1)(1)确定初始值确定初始值确定初始值确定初始值由由由由t t=0=0-电路可求得电路可求得电路可求得电路可求得由换路定则由换路定则由换路定则由换路定则应用举例应用举例下一页下一页章目录章目录返回返回上一页上一页退出退出(2)(2)确定稳态值确定稳态值确定稳态值确定稳态值由换路后电路求稳态值由换路后电路求稳态值(3)(3)由换路后电路求由换路后电路求由换路后电路求由换路后电路求 时间常数时间常数时间常数时间常数 下一

38、页下一页章目录章目录返回返回上一页上一页退出退出三要素三要素三要素三要素u uC C 的变化曲线如图的变化曲线如图的变化曲线如图的变化曲线如图18V54Vu uC C变化曲线变化曲线变化曲线变化曲线tO下一页下一页章目录章目录返回返回上一页上一页退出退出用三要素法求用三要素法求下一页下一页章目录章目录返回返回上一页上一页退出退出例例2:由由t=0-时电路时电路电路如图,开关电路如图,开关电路如图,开关电路如图,开关S S闭合前电路已处于稳态。闭合前电路已处于稳态。闭合前电路已处于稳态。闭合前电路已处于稳态。t t=0=0时时时时S S闭合闭合闭合闭合,试求:,试求:,试求:,试求:t t 0

39、0时电容电压时电容电压时电容电压时电容电压uC C和电流和电流和电流和电流iC C、i1 1和和和和i2 2 。解:解:用三要素法求解用三要素法求解用三要素法求解用三要素法求解求初始值求初始值1 2 下一页下一页章目录章目录返回返回上一页上一页退出退出求时间常数求时间常数由右图电路可求得由右图电路可求得求稳态值求稳态值 1 2 下一页下一页章目录章目录返回返回上一页上一页退出退出(、关联关联)1 2 下一页下一页章目录章目录返回返回上一页上一页退出退出3.5 微分电路和积分电路微分电路和积分电路3.5.1 微分电路微分电路 微分电路与积分电路是矩形微分电路与积分电路是矩形微分电路与积分电路是矩

40、形微分电路与积分电路是矩形脉冲激励下的脉冲激励下的脉冲激励下的脉冲激励下的RCRC电电电电路路路路。若选取不同的时间常数,可构成输出电压波形若选取不同的时间常数,可构成输出电压波形若选取不同的时间常数,可构成输出电压波形若选取不同的时间常数,可构成输出电压波形与输入电压波形之间的特定(微分或积分)的关系。与输入电压波形之间的特定(微分或积分)的关系。与输入电压波形之间的特定(微分或积分)的关系。与输入电压波形之间的特定(微分或积分)的关系。1.1.电路电路电路电路条件条件条件条件(2)(2)输出电压从电阻输出电压从电阻输出电压从电阻输出电压从电阻 R R 端取出端取出端取出端取出TtUOtp下

41、一页下一页章目录章目录返回返回上一页上一页退出退出tO2.2.分析分析分析分析由由由由KVLKVL定律定律定律定律由公式可知由公式可知 输出电压近似与输入电输出电压近似与输入电压对时间的微分成正比。压对时间的微分成正比。3.3.波形波形波形波形tt1UtpO下一页下一页章目录章目录返回返回上一页上一页退出退出不同不同时的时的u2波形波形=0 0.0505tp=1010tp=0.20.2tp 应用应用应用应用:用于波形变换用于波形变换用于波形变换用于波形变换,作为触发信号。作为触发信号。作为触发信号。作为触发信号。2TTUtT/2tp下一页下一页章目录章目录返回返回上一页上一页退出退出3.5.2

42、 积分电路积分电路条件条件条件条件(2)(2)从电容器两端输出。从电容器两端输出。从电容器两端输出。从电容器两端输出。由图:由图:由图:由图:1.1.电路电路电路电路 输出电压与输入电输出电压与输入电压近似成积分关系。压近似成积分关系。2.分析分析下一页下一页章目录章目录返回返回上一页上一页退出退出3.3.波形波形波形波形tt2t1Utt2t1U 用作示波器的扫描锯齿波电压用作示波器的扫描锯齿波电压应用应用应用应用:下一页下一页章目录章目录返回返回上一页上一页退出退出3.6 RL电路的响应电路的响应3.6.1 RL 电路的零输入响应电路的零输入响应1.1.RLRL 短接短接短接短接(1)(1)

43、的变化规律的变化规律的变化规律的变化规律(三要素公式三要素公式三要素公式三要素公式)1)1)确定初始值确定初始值确定初始值确定初始值 2)确定稳态值确定稳态值 3)3)确定电路的时间常数确定电路的时间常数确定电路的时间常数确定电路的时间常数下一页下一页章目录章目录返回返回上一页上一页退出退出(2)(2)变化曲线变化曲线变化曲线变化曲线-UUOOt下一页下一页章目录章目录返回返回上一页上一页退出退出2.RL直接从直流电源断开直接从直流电源断开(1)(1)可能产生的现象可能产生的现象可能产生的现象可能产生的现象1)1)刀闸处产生电弧刀闸处产生电弧刀闸处产生电弧刀闸处产生电弧2)2)电压表瞬间过电压

44、电压表瞬间过电压电压表瞬间过电压电压表瞬间过电压下一页下一页章目录章目录返回返回上一页上一页退出退出(2)(2)解决措施解决措施解决措施解决措施2)2)接续流二极管接续流二极管接续流二极管接续流二极管D D1)1)接放电电阻接放电电阻接放电电阻接放电电阻下一页下一页章目录章目录返回返回上一页上一页退出退出 图示电路中图示电路中,RL是发电机的励磁绕组,其电感较是发电机的励磁绕组,其电感较大。大。Rf是调节励磁电流用的。当将电源开关断开时,是调节励磁电流用的。当将电源开关断开时,为了不至由于励磁线圈所储的磁能消失过快而烧坏开为了不至由于励磁线圈所储的磁能消失过快而烧坏开关触头,往往用一个泄放电阻

45、关触头,往往用一个泄放电阻R 与线圈联接。开关与线圈联接。开关接通接通R同时将电源断开。经过一段时间后,再将开关同时将电源断开。经过一段时间后,再将开关扳到扳到 3的位置,此时电路完全断开。的位置,此时电路完全断开。例例例例:(1)R=1000,试求开关试求开关S由由1合合向向2瞬间线圈两端的电压瞬间线圈两端的电压uRL。电路稳态时电路稳态时S由由1合向合向2。(2)在在(1)中中,若使若使U不超过不超过220V,则泄放电阻则泄放电阻R应选多大?应选多大?下一页下一页章目录章目录返回返回上一页上一页退出退出解解:(3)根据根据(2)中所选用的电阻中所选用的电阻R,试求开关接通试求开关接通R后经

46、后经过多长时间,线圈才能将所储的磁能放出过多长时间,线圈才能将所储的磁能放出95%?(4)写出写出(3)中中uRL随时间变化的表示式。随时间变化的表示式。换路前,线圈中的电流为换路前,线圈中的电流为换路前,线圈中的电流为换路前,线圈中的电流为(1)(1)开关接通开关接通开关接通开关接通R R 瞬间线圈两端的电压为瞬间线圈两端的电压为瞬间线圈两端的电压为瞬间线圈两端的电压为(2)(2)如果不使如果不使如果不使如果不使u uRL RL(0)(0)超过超过超过超过220V,220V,则则则则即即 下一页下一页章目录章目录返回返回上一页上一页退出退出(3)(3)求当磁能已放出求当磁能已放出求当磁能已放

47、出求当磁能已放出95%95%时的电流时的电流时的电流时的电流求所经过的求所经过的时间时间下一页下一页章目录章目录返回返回上一页上一页退出退出3.6.2 RL电路的零状态响应电路的零状态响应1.1.变化规律变化规律变化规律变化规律 三要素法三要素法三要素法三要素法下一页下一页章目录章目录返回返回上一页上一页退出退出2.2.、变化曲线变化曲线变化曲线变化曲线OO下一页下一页章目录章目录返回返回上一页上一页退出退出 3.6.3 RL电路的全响应电路的全响应1.1.变化规律变化规律变化规律变化规律 (三要素法三要素法三要素法三要素法)下一页下一页章目录章目录返回返回上一页上一页退出退出下一页下一页章目

48、录章目录返回返回上一页上一页退出退出用三要素法求用三要素法求用三要素法求用三要素法求2.2.变化规律变化规律变化规律变化规律下一页下一页章目录章目录返回返回上一页上一页退出退出变化曲线变化曲线变化曲线变化曲线变化曲线变化曲线21.2O42.4Ot下一页下一页章目录章目录返回返回上一页上一页退出退出用三要素法求解用三要素法求解解解:已知:已知:已知:已知:S S 在在在在 t t=0=0 时闭合,换路前电路处于稳态。时闭合,换路前电路处于稳态。时闭合,换路前电路处于稳态。时闭合,换路前电路处于稳态。求求求求:电感电流电感电流电感电流电感电流例例:由由t=0等效电路可求得等效电路可求得(1)(1)

49、求求求求u uL L(0(0+),),i iL L(0(0+)下一页下一页章目录章目录返回返回上一页上一页退出退出由由t=0+等效电路可求得等效电路可求得 (2)求稳态值求稳态值 t=0+等效电路等效电路2 1 2AR12+_R3R2 t=等效电路等效电路2 1 2 R1R3R2由由t=等效电路可求等效电路可求得得t=03AR3IS2 1 1H_+LSR2R12 下一页下一页章目录章目录返回返回上一页上一页退出退出(3)求时间常数求时间常数起始值起始值-4V稳态值稳态值2Ai iL L,u,uL L变化曲线变化曲线变化曲线变化曲线Ott=03AR3IS2 1 1H_+LSR2R12 此此课件下件下载可自行可自行编辑修改,修改,仅供参考!供参考!感感谢您的支持,我您的支持,我们努力做得更好!努力做得更好!谢谢!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 语文专题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁